期刊文献+

电化学沉积法制备ZnO柔性纳米发电机 被引量:4

Fabrication of ZnO flexible nanogenerator by electrodeposition
下载PDF
导出
摘要 本文利用电化学沉积法在PET-ITO柔性基底上成功制备出ZnO纳米发电机。采用X射线衍射仪,扫描电子显微镜和电化学工作站对ZnO纳米棒进行了生长观察和性能测试。XRD图谱显示,在不同沉积时间下ZnO纳米棒都具有(002)峰的择优取向。SEM表面形貌图显示,电沉积时间为2h时ZnO纳米棒呈现明显的六角纤锌矿结构。SEM断面图表明,电化学沉积2h的纳米棒最长为1.1μm。为了更好地观察不同沉积时间对纳米发电机的性能影响,在沉积时间为1,1.5,2h的条件下制备了3种纳米发电机。最终结果显示,电沉积时间2h制备的纳米发电机的电压输出性能最好,输出电压为960mV。最后,研究了电沉积法制作纳米发电机的工作机制。 In the present study,ZnO nanogenerators were fabricated on PET-ITO flexible substrates by electrochemical deposition.The ZnO nanorods were examined using an X-ray diffractometer,a scanning electron microscope,and an electrochemical workstation.The results show that the ZnO nanorods exhibit a preferred orientation of the(002)peak that varies with the deposition time.SEM images show that the ZnO nanorods that were electrodeposited in under 2 h exhibit a significant hexagonal wurtzite structure.SEM cross-sectional images of these ZnO nanorods show that they have a length of up to 1.1μm.To better observe the piezoelectric properties of nano-generators for which the ZnO nanorods were deposited over different durations,three different types of nano-generator were prepared.The results show that the nanogenerator with the ZnO nanorods that were deposited in under 2 h has an output voltage of 960 mV.In addition,this paper explains the working mechanism of a nano-generator prepared using the electrodeposition method.
作者 张小舟 王佩红 刘星 夏艳平 龚泽洲 ZHANG Xiao-zhou;WANG Pei-hong;LIU Xing;XIA Yan-ping;GONG Ze-zhou(School of Physics&Materials Science,Anhui University,Hefei 230601,China)
出处 《光学精密工程》 EI CAS CSCD 北大核心 2018年第9期2222-2228,共7页 Optics and Precision Engineering
基金 国家自然科学基金面上项目(No.61671017) 安徽省高校优秀青年人才支持计划重点资助项目(No.gxyqZD2018004) 安徽省高等学校省级自然科学研究重点资助项目(No.KJ2016A787) 安徽省自然科学基金面上项目(No.1508085ME72)
关键词 ZnO纳米发电机 电化学沉积法 柔性基底 ZnO nanogenerator electrochemical deposition method flexible substrate
  • 相关文献

参考文献6

二级参考文献90

  • 1ROYLANCE L M, ANGELL J B. A batch-fabricated silicon accelerometer[J]. IEEE Trans. On Electron Devices, 1979,26:1911-1917.
  • 2ZACHARY J, WINNIES, ANJA B. Design, fabrication and testing of a novel MEMS resonator for mass sensing applications[J]. Microelectronic Engineering, 2007,84:1601-1605.
  • 3USTUNEI. H, ROUNDY D, ARIAS T A. Model ing a suspended nanotube oscillator[J]. Nano Lett, 2005(5):523-526.
  • 4BAO M H. Analysis and Design Principles of MEMS Devices [M]. Elsevier, 2005.
  • 5PAN Z W, DAI Z R, WANG Z L. Nanobelts of semieonducting oxides [J]. Science, 2001, 291: 1947-1949.
  • 6WANG D Q, ZHU R, ZHOU Z Y, el al.. Controlled assembly of zinc oxide nanowires using dielectrophoresis [J]. Applied Physics Letters, 2007,90: 103-110.
  • 7ARNOLD M S, AVOURIS P, PAN Z W, et al.. Field-effect transistors based on single semiconducting oxide nanobelts [J]. Phys. Chem, 2003, 107: 659-663.
  • 8SAZONOVA V, YAISH Y, USTUNEL H, et al.. A tunable carbon nanotube electromechanical oscillator [J]. Nature, 2004,1431:284-287.
  • 9ZHU R, WANG D Q, XIANG S Q, et al.. Modeling and experimental study of nanoelectromechanical oscillator using single zinc oxide nanowire [C].IEEE International Conference on Micro Electro Mechanical Systems ( IEEE MEMS ), 2008: 746- 749.
  • 10FEJER M M. Nonlinear-optical frequency-conversion [J]. Phys. Today. , 1994, 47(5): 25-32.

共引文献50

同被引文献31

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部