期刊文献+

基于Grey-GMDH的模块化实时潮汐预报 被引量:4

Modular Real-Time Tidal Level Prediction Based on Grey-GMDH
下载PDF
导出
摘要 为了提高潮汐水位的实时预测精度,本文提出了一种基于灰色的数据处理群模块化(Grey-GMDH)潮汐水位实时预测模型。模块化将潮汐分解为两部分:由天体引潮力形成的天文潮部分和由各种天气以及环境因素引起非天文潮部分。使用Grey-GMDH模型和调和分析模型分别对潮汐的非天文潮和天文潮部分进行仿真预测,然后将两部分的预测结果综合形成最终的潮汐预测值。并选用San Diego港口的实测潮汐值数据进行实时预报的仿真实验,实验结果验证了该方法的可行性与有效性并取得了良好的仿真结果,验证了模型有着较高的预报精度。 A novel approach is proposed for real-time tidal level forecasting.Real-time forecasting of tidal level is of great significance for human being activities in the fields of coastal and marine engineering.Nevertheless,the disturbance factors of tidal level are quite complicated which deteriorate the tidal forecasting accuracy.In order to improve the accuracy of real-time tidal level forecast,a modular real-time tidal level prediction approach is proposed based on Grey group method of data handling network.GMDH is a polynomial network which is utilized in forecasting and pattern recognition.However,GMDH is commonly sensitive to non-deterministic time series which may lead to low accuracy of forecasting.In this study,the grey theory is introduced into the GMDH network to reduce the unfavorable effects of uncertainty caused by environmental factors and the adverse effects caused thereby on the forecasting accuracy.The modular approach is divided into two parts:the astronomical tide portion caused by celestial bodies′movement and the non-astronomical tide portion caused by various weather and environmental factors.The Grey-GMDH model is used to predict the non-astronomical tide portion,while the harmonic analysis model is used to predict the astronomical tide portion.Then the final prediction result is achieved by combining the estimation outputs of harmonious analysis model and the Grey-GMDH model.In order to verify the validity and accuracy of the proposed prediction model,the real-measured tidal level data of Port of San Diego is chosen as the test database.Simulation results have demonstrated that the proposed method can give predictions for tidal level in real time with high accuracy and satisfactory stability.
作者 张泽国 尹建川 柳成 ZHANG Ze-Guo;YIN Jian-Chuan;LIU Cheng(Navigation College,Dalian Maritime University,Dalian 116026,China)
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第11期140-146,共7页 Periodical of Ocean University of China
基金 国家自然科学基金项目(51279106 51379002) 中央高校基本科研业务经费项目(3132016116 3132016314) 交通部应用基础研究项目(2014329225010) 辽宁省教育厅项目(L2014214)资助~~
关键词 潮汐水位实时预报 调和分析法 模块化 数据处理群网络 灰色模型 real-time tidal level prediction harmonious analysis method modular method Group method of data handling network Grey model
  • 相关文献

参考文献4

二级参考文献26

  • 1樊新海,苗卿敏,王华民.灰色预测GM(1,1)模型及其改进与应用[J].装甲兵工程学院学报,2003,17(2):21-23. 被引量:37
  • 2文新辉,陈开周.一种基于神经网络的非线性时间序列模型[J].西安电子科技大学学报,1994,21(1):73-78. 被引量:10
  • 3马维军.基于改进的灰色GM(1,1)模型预测产品的故障数[J].黑龙江大学自然科学学报,2005,22(3):389-392. 被引量:7
  • 4邓聚龙.灰色预测与决策[M].华中理工大学出版社,1988.
  • 5http://dlib.edu.cnki.net/kns50/.
  • 6HaykinS 叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..
  • 7DARWIN G H.On an apparatus for facilitating the reduction of tidal observations[J].Proc Royal Soc London A,1892,52:345-376
  • 8DOODSON A T.The analysis of observations[J].Phil Trans Roy,1928,A265:223-279
  • 9YEN P H,JAN C D,LEE Y P,et al.Application of Kalman filter to short-term tide level prediction[J].J Waterway Port Coastal Ocean Eng,1996,122(5):226-231.
  • 10TSAI C P,LEE T L.Back-propagation neural network in tidal-level forecasting[J].J Waterway Port Coastal Ocean Eng,1999,125(4):195-202

共引文献255

同被引文献39

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部