摘要
以无机盐SnCl_4·5H_2O为前驱体,CuCl_2为掺杂剂通过一步水热法制备了Cu掺杂SnO_2阴极材料.采用扫描电子显微镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)对该物质的形貌、晶型结构和元素组成及价态进行表征.在常温常压下于0.5 mol/L NaHCO3溶液中,通过循环伏安曲线、塔菲尔(Tafel)曲线和阻抗谱等考察了该阴极材料及其还原CO_2的性能.结果表明,该物质为金红石相SnO_2,且掺杂后晶粒减小,Cu^(2+)取代了SnO_2晶格中的Sn^(4+);当Cu掺杂量为1.5%时材料的催化活性最好.催化剂负载量为0.8mg/cm^2时,电流密度可达到3.5mA/cm^2,产甲酸的塔菲尔曲线斜率为55.1 mV/dec,最大法拉第效率约为23%,是纯SnO_2的12倍.
Cu doped SnO 2 was prepared through one-step hydrothermal method with SnCl 4·5H 2O as precursor material and CuCl 2 as dopant.The surface morphology,crystal structure and element composition as well as valence state were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).The properties of the material and the reduction of CO 2 were investigated by cyclic voltammetry,Tafel plot and electrochemical impedance spectroscopy under normal temperature and pressure in 0.5 mol/L NaHCO 3 solution.The results show that SnO 2 has rutile structure and Cu 2+ions replace some Sn 4+ions of SnO 2.Besides,the particles size decreases slightly after doping Cu+.Through electrochemical performance evaluation,the best catalytic performance was achieved as the Cu doping content was 1.5%.The current density reached 3.5 mA/cm 2,the Tafel slope was 55.1 mV/dec and the maximum Faradic efficiency reached 23%when the catalyst loading amount was 0.8 mg.The Faradic efficiency is 12 times that of pure SnO 2.Therefore,the Cu doped SnO 2 can be used as cathode material for electrocatalytic reduction of CO 2.
作者
胡雪艳
王娜
郝玉婷
许志庆
王明慧
师改琴
杨慧敏
梁镇海
HU Xueyan;WANG Na;HAO Yuting;XU Zhiqing;WANG Minghui;SHI Gaiqin;YANG Huimin;LIANG Zhenhai(College of Chemistry and Chemical Engineering Taiyuan University of Technology,Taiyuan 030024,China;Polytechnic Institute,Taiyuan University of Technology,Taiyuan 030024,China)
出处
《高等学校化学学报》
SCIE
EI
CAS
CSCD
北大核心
2018年第10期2265-2271,共7页
Chemical Journal of Chinese Universities
基金
国家自然科学青年基金(批准号:51703151)
太原理工大学校基金(批准号:1205-04020202)
山西省大学生创新项目(批准号:2018846)资助~~
关键词
铜掺杂氧化锡
电催化
二氧化碳还原
低过电位
甲酸
Cu doped Sn-oxide
Electrocatalysis
Carbon dioxide reduction
Low overpotential
Formate