摘要
无人机运动状态识别是无人机运行状态分析的基础,是实现无人机航迹预测的必要条件。对于非合作目标来说,动作捕捉系统可以有效采集其航迹数据。提出一种基于动作捕捉的无人机运动状态识别方法。首先,通过插值、重采样、滤波等方法对包含噪声的无人机航迹数据进行预处理;然后,通过特征提取与特征选择方法,针对速度、加速度、曲率、转角这4个运动参数,提取无人机运动特征;并分割无人机航迹。最后运用支持向量机的方法进行无人机运动状态识别,对速度、加速度、曲率的分类精度分别达到了95%、90%和100%。证明了本方法的可行性。
The unmanned aerial vehicle(UAV)motion states recognition is the basis of UAV operation status analysis and it is a necessary condition for UAV track prediction.For non-cooperative targets,the motion capture system can effectively collect its track data.A UAV motion state recognition method was proposed based on motion capture.Firstly,the noise-containing drone track data is preprocessed by interpolation,resampling,filtering and other methods.Then,feature extraction and feature selection methods are used to extract the four motion parameters:velocity,acceleration,curvature,and rotation angle,drone movement characteristics and segmented drone tracks.Finally,using the method of support vector machine to identify the motion state of UAV,the classification accuracy of speed,acceleration and curvature reached 95%,90%and 100%respectively.The feasibility of this method is proved.
作者
赵嶷飞
杨明泽
ZHAO Yi-fei;YANG Ming-ze(Air Traffic Management College,Civil Aviation University of China,Tianjin 300100,China)
出处
《科学技术与工程》
北大核心
2018年第27期53-58,共6页
Science Technology and Engineering
基金
国家自然科学基金委员会与中国民用航空局联合项目(U1633121
U1533112)资助
关键词
无人机
运动状态
状态识别
支持向量机
unmanned aerial vehicle
movement state
state recognition
support vector machines