期刊文献+

一种面向共享账号的个性化推荐算法 被引量:1

Personalized recommendation algorithm for shared account
下载PDF
导出
摘要 为了解决多用户共享账号情况下,账号内部分用户得不到有效推荐的问题,提出PRASA(personalized recommendation algorithm for shared account)算法,首先利用LDA(latent Dirichlet allocation)主题模型构建项目特征向量,接着利用DPC(density peaks based clustering)算法对项目进行聚类分组,为分组后的每组项目分别进行推荐,对于离群点进行单独处理后产生推荐,保证推荐结果可以覆盖更广泛。实验结果表明,提出的PRASA算法可以有效地为共享账号的用户产生合适的推荐。 In order to solve the problem of multi-user sharing account,this paper proposed the PRASA(personalized recommendation algorithm for shared account)algorithm.Firstly,the algorithm constructed the item’s feature vector by using the LDA(latent Dirichlet allocation)theme model.Then it grouped the items and recommended for each group of items and each of the outliers,the recommended results could be covered more widely in this way.The experimental results show that the proposed PRASA algorithm can effectively generate the appropriate recommendations for the users that shared the same account.
作者 李伟 刘学军 徐新艳 Li Wei;Liu Xuejun;Xu Xinyan(School of Computer Science&Engineering,Nanjing Tech University,Nanjing 211816,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第10期2912-2915,2919,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61203072) 江苏省重点研发计划资助项目(BE2015697)
关键词 共享账号 推荐系统 协同过滤 推荐解释 shared account recommendation system collaborative filtering explaining recommendations
  • 相关文献

参考文献3

二级参考文献85

  • 1李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 2Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 3Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 4Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 5Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 6Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 7Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 9Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 10Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.

共引文献743

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部