期刊文献+

引入偏置的矩阵分解推荐算法研究 被引量:6

Bias based matrix factorization recommender techniques
下载PDF
导出
摘要 由于矩阵分解良好的可扩展性和较高的预测精度,在推荐算法的应用中有出色的表现。在基础的矩阵分解模型上先后引入全局偏置和时间偏置,以提高预测准确度和推荐质量。以个性化推荐系统为对象,在Movie Lens数据集上的实验表明,所设计的方法提高了算法的预测精度。 Matrix factorization which is widely accepted in recent recommendation prize has become popular by combining good scalability with predictive accuracy and much flexibility.This paper focused on modeling bias and time effects in matrix factorization.And it tested these models on MovieLens dataset.Experiment results show that prediction accuracy in matrix factorization can be improved significantly by using bias and time information.
作者 毕华玲 周微 卢福强 Bi Hualing;Zhou Wei;Lu Fuqiang(College of Information Science&Engineering,Northeastern University,Shenyang 110819,China;Northeastern University at Qinhuang-dao,Qinhuangdao Hebei 066004,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第10期2928-2931,2964,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(71401027) 中央高校基本科研业务费(国家项目培育种子基金)资助项目(N172304016) 河北省自然科学基金资助项目(G2016501086) 河北省高等学校科学技术研究重点项目(ZD2016202)
关键词 矩阵分解 偏置 推荐系统 matrix factorization bias recommender system
  • 相关文献

参考文献2

二级参考文献16

  • 1Mnih A, Salakhutdinov R. Probabilistic matrix factorization. Advances in Neural Information Processing Systems, 2007.
  • 2Wu L, Chen E, Liu Q, et al neighborhood-aware probabilistic Leveraging tagging for matrix factorization. Procof the 2lst ACM International Conference on Information and Knowledge Management. ACM. 2012. 1257-1264.
  • 3Koren Y. The BellKor solution to the Netflix grand prize. Nefflix Prize Documentation, 2009.
  • 4Salakhutdinov R, Mnih A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. Proc. of the Twenty Fifth International Conference Machine Learning. Helsinki Finland. June 5-9, 2008. 880-887.
  • 5Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Computer, 2009, 42(8): 30-37.
  • 6Ma H, Yang H, Lyu M. SoRec: Social recommendation using probabilistic matrix factofization. Proc. of the 17th Acm Conference on Information and Knowledge Management. California Usa. October 26-30, 2008.931-940.
  • 7Shan H, Banerjee A. Generalized probabilistic matrix factorizations for collaborative filtering. 2010 IEEE 10th International Conference on Data Mining (ICDM). IEEE. 2010. 1025-1030.
  • 8Hernandezlobato J, Houlsby N, Ghahramani Z. Probabilistic Matrix factorization with non-random missing data. Proc. of the 31st International Conference on Machine Learning. 2014.
  • 9Lawrence N D, Urtasun R. Non-linear matrix factorization with Gaussian processes. International Conference on Machine Learning. 2009.
  • 10许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:542

共引文献14

同被引文献57

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部