摘要
针对基于稀疏表示的图像质量评价算法特征信息挖掘不充分、忽略稀疏特性等问题进行了研究,提出了一种基于稀疏表示与能量分解的无参考图像质量评价方法。首先利用L1范数作为稀疏惩罚项学习稀疏编码字典,并计算待评价图像的稀疏表示系数;然后对稀疏系数矩阵进行奇异值分解,并重建若干个等能量的子矩阵;最后联合max-pooling和L1范数描述稀疏系数矩阵及其子矩阵特征,L1范数刻画了稀疏性,子矩阵丰富了特征信息。实验结果表明,该算法能在无参考的情况下更好地评价图像质量,主客观分值一致性好,且时间复杂度较低,具有较好的应用价值。
Focusing on the problems of the existing sparse representation based image quality assessment methods which has poorly mining features and ignoring sparsity,this paper proposed a new no-reference image quality assessment method based on sparse representation and energy splitting(SRAES).Firstly,it took L1-norm as sparse penalty term in the process of learning dictionary of sparse coding and computing sparse representation.Secondly,it used SVD to decompose sparse coefficients and reconstructed several equal-energy sub-matrices.Finally,it united max-pooling and L1-norm to describe the features of sparse coefficients matrix and its sub-matrices,where L1-norm depicted sparsity and these sub-matrices enriched the feature information.The experimental results show that this method yields superior performance with high consistency and low computational complexity,and it is suitable for applications.
作者
李博文
范赐恩
石文轩
冯天鹏
Li Bowen;Fan Ci’en;Shi Wenxuan;Feng Tianpeng(School of Electronic Information,Wuhan University,Wuhan 430072,China;School of Remote Sensing&Information Engineering,Wuhan University,Wuhan 430072,China)
出处
《计算机应用研究》
CSCD
北大核心
2018年第10期3192-3196,3200,共6页
Application Research of Computers
基金
国家自然科学基金青年科学基金资助项目(61501334)