期刊文献+

基于异常事件驱动的簇结构的检测算法

An algorithm for abnormal event driven cluster topology detection
下载PDF
导出
摘要 有效地使用传感节点能量,并提高检测异常事件概率,成为无线传感网络应用研究热点。为此,提出基于异常事件驱动的簇结构的检测算法(AEDCTD)。AEDCTD算法通过异常事件位置建立簇,然后由簇内节点检测事件。在建立簇时,考虑了节点对事件的检测概率及节点剩余能量,只有当剩余能量大于能量阈值的节点才可能加入簇。同时,引用动态能量阈值,平衡能耗。实验数据表明,AEDCTD算法具有较低的漏检率,同时,AEDCTD算法与CCM和GEP-ADS算法的能耗相比分别降低了近4.1%和5.8%。 Effective use of sensor node energy and improvement of abnormal event detection probability have become hot research spots in wireless sensor network application.Therefore,an algorithm for abnormal event driven cluster topology detection(AEDCTD)is proposed.In the AEDCTD algorithm,the cluster is constructed according to the positions of abnormal events,and events are detected by nodes in the cluster.During cluster construction,the event detection probability and residual energy of nodes are considered,and only the nodes whose residual energy is larger than the energy threshold can join the cluster.The dynamic energy threshold is introduced to balance energy consumption.The experimental results show that in compari?son with the CCM and GEP-ADS algorithms,the AEDCTD algorithm has lower missed detection probability,and can save ener?gy consumption of about 4.1%and 5.8%respectively.
作者 常坤 武风波 张渤 刘海强 CHANG Kun;WU Fengbo;ZHANG Bo;LIU Haiqiang(School of Communication and Information Engineering,Xi’an University of Science and Technology,Xi’an 710054,China)
出处 《现代电子技术》 北大核心 2018年第20期37-41,共5页 Modern Electronics Technique
基金 中国博士后科学基金(2016M592817) 西安科技大学博士启动金项目(2013QDJ044)~~
关键词 无线传感网 异常事件 节点能量 检测算法 漏检率 wireless sensor network abnormal event cluster node energy detection algorithm missed detection proba.bility
  • 相关文献

参考文献5

二级参考文献34

  • 1王兵,严斌宇,袁道华.Ad Hoc节点移动性模型特点初探[J].四川大学学报(自然科学版),2005,42(1):68-72. 被引量:3
  • 2Westhoff D,Girao J,Acharya M.Concealed Data Aggregation for Reverse Multicast Traffic in Sensor Networks:Encryption,Key Distribution,and Routing Adaptation[J].IEEE Transactions on Mobile Computing,2006,5(10):1417-1431.
  • 3Karlof C,Sastry N,Wagner D.Tinysec:A Link Layer Security Architecture for Wireless Sensor Networks[C]//Proc.of the 2nd ACM Conference on Embedded Networked Sensor Systems.Baltimore,USA:ACM Press,2004.
  • 4Menezes A J.Elliptic Curve Public Key Cryptosystems[M].Norwell,USA:Kluwer Academic Publishers,1994.
  • 5Mykletun E,Girao J,Westhoff D.Public Key-based Crypto schemes for Data Concealment in Wireless Sensor Networks[C]// Proc.of IEEE International Conference on Communications.Istanbul,Turkey:[s.n.],2006.
  • 6Liu An,Peng Ning.Tinyecc:A Configurable Library for Elliptic Curve Cryptography in Wireless Sensor Networks[C]//Proc.of the 7th International Conference on Information Processing in Sensor Networks.St.Louis,USA:[s.n.],2008:245-256.
  • 7Atakli Idris M,Hu Hongbing,Chen Yu,et al. Mali- cious node detection in wireless sensor networks using weighted trust evaluation [C] //ACM. The 2008 Spring Simulation Multiconference, SanDiego: ACM Press, 2008 : 836-843.
  • 8Meng Jia, Li Husheng, Han Zhu. Sparse event detec- tion in wireless sensor networks using compressive sensing[C] //Barbara A Sullivan. The 43rd Annual Conference on Information Sciences and Systems. Jeff So0knarine: Johns-Hopkins University, 2009: 181- 185.
  • 9Candes E J, Tao T. Near-optimal signal recovery from random projections: Universal encoding strategies[J]. IEEE Trans Inform Theory, 2006, 52 (12): 5406-5425.
  • 10Bruckstein A, Donoho D L, Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images[J]. SIAM Review, 2007, 51 (1) : 34-81.

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部