期刊文献+

结构可靠性分析的LCVT-SVR方法 被引量:2

Structural reliability analysis with LCVT-SVR method
下载PDF
导出
摘要 为了克服结构可靠性分析中隐式极限状态函数和高计算量问题,提出LCVT-SVR结构可靠性分析方法.该方法利用拉丁质心Voronoi网格化(LCVT)抽样方法生成空间均匀性较好的训练样本,采用均匀映射得到一定数量的失效样本.基于训练样本,建立极限状态函数的支持向量机回归(SVR)代理模型,用于结构可靠性分析.在同一组SVR训练参数条件下,对多种抽样方法进行对比研究.结果表明,基于LCVT样本构建的SVR代理模型具有精度高和鲁棒性好的特点.利用2个工程算例,验证了所提方法的性能及实用性. A LCVT-SVR method was proposed for structural reliability analysis in order to solve the problems of implicit limit state function and high computational effort.The method adopts the Latinized centroidal Voronoi tessellation(LCVT)sampling method in order to generate the training samples with better uniform coverage.The uniform mapping was employed to obtain a certain number of failure samples for a proper training process.The investigated limit state function(LSF)was approximated based on these training samples by a support vector regression(SVR)surrogate model which was applied to structural reliability analysis.Various sampling methods were compared under the same setting of SVR training parameters.The computational results show that the SVR surrogate model based on LCVT samples has high accuracy and robustness.The performance and applicability of the proposed method were validated by two engineering examples.
作者 张航 李洪双 ZHANG Hang;LI Hong-shuang(College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第10期2035-2042,共8页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(U1533109) 南京航空航天大学研究生创新基地(实验室)开放基金资助项目(kfjj20160113) 江苏高校优势学科建设工程资助项目 中央高校基本科研业务费专项资金资助项目
关键词 结构可靠性分析 隐式极限状态函数 支持向量机回归 LCVT抽样方法 均匀映射 structural reliability analysis implicit limit state function support vector machine regression LCVT sampling method uniform mapping
  • 相关文献

参考文献1

二级参考文献12

  • 1董玉德,汪玉玺,刘达新,王万龙.三角平面Halton点采样策略及其性能分析[J].计算机辅助设计与图形学学报,2007,19(8):1063-1068. 被引量:13
  • 2Lee G, Mou J, Shen Y. Sampling strategy design for dimensional measurement of geometric features using coordinate measuring machine[J]. International Journal of Machine Tools & Manufacture, 1997, 37(7): 917- 934.
  • 3Kim W S, Raman S. On the selection of flatness measurement points in coordinate measuring machine inspection[J]. International Journal of Machine Tools and Manufacture, 2000, 40(3): 427-443.
  • 4Li S Z. Adaptive sampling and mesh generation[J]. Computer-Aided Design, 1995, 27(3) : 235-240.
  • 5Zhang S G, Ajmal A, Woottton J, et al. A featurebased inspection process planning system for coordinate measuring machine (CMM) [J]. Journal of Materials Processing Technology, 2000, 107(1-3) : 111-118.
  • 6Elkott D, ElMaraghy H, EIMaraghy W. Automatic sampling for CMM inspection planning of free-form surface [ J ]. International Journal of Production Research, 2002, 40(11) : 2653-2676.
  • 7Hu Jun, Li Ye, Wang Yu-han, et al. Adaptive sampling method for laser measuring free-form surface[J]. The International Journal of Advanced Manufacturing Technology, 2004, 24(11,12): 886-890.
  • 8Obeidat Suleiman M, Raman Shivakumar. An intelligent sampling method for inspecting free- form surfaces[J]. The International Journal of Ad-vanced Manufacturing Technology, 2009, 40(11,12) : 1125-1136.
  • 9Du Qiang, Faber Vance, Gunzburger Max. Centroidal Voronoi tessellations: application and algorithms[J]. Society for Industrial and Applied Mathematics, 1999, 41(4) : 637-676.
  • 10Du Qiang, Emelianenko Maria, Ju Li-li. Convergence of the lloyd algorithn for computing centroidal Voronoi tessellation [J]. Society for Industrial and Applied Mathematics, 2006, 44(1) : 102-119.

共引文献9

同被引文献15

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部