摘要
为了克服结构可靠性分析中隐式极限状态函数和高计算量问题,提出LCVT-SVR结构可靠性分析方法.该方法利用拉丁质心Voronoi网格化(LCVT)抽样方法生成空间均匀性较好的训练样本,采用均匀映射得到一定数量的失效样本.基于训练样本,建立极限状态函数的支持向量机回归(SVR)代理模型,用于结构可靠性分析.在同一组SVR训练参数条件下,对多种抽样方法进行对比研究.结果表明,基于LCVT样本构建的SVR代理模型具有精度高和鲁棒性好的特点.利用2个工程算例,验证了所提方法的性能及实用性.
A LCVT-SVR method was proposed for structural reliability analysis in order to solve the problems of implicit limit state function and high computational effort.The method adopts the Latinized centroidal Voronoi tessellation(LCVT)sampling method in order to generate the training samples with better uniform coverage.The uniform mapping was employed to obtain a certain number of failure samples for a proper training process.The investigated limit state function(LSF)was approximated based on these training samples by a support vector regression(SVR)surrogate model which was applied to structural reliability analysis.Various sampling methods were compared under the same setting of SVR training parameters.The computational results show that the SVR surrogate model based on LCVT samples has high accuracy and robustness.The performance and applicability of the proposed method were validated by two engineering examples.
作者
张航
李洪双
ZHANG Hang;LI Hong-shuang(College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2018年第10期2035-2042,共8页
Journal of Zhejiang University:Engineering Science
基金
国家自然科学基金资助项目(U1533109)
南京航空航天大学研究生创新基地(实验室)开放基金资助项目(kfjj20160113)
江苏高校优势学科建设工程资助项目
中央高校基本科研业务费专项资金资助项目
关键词
结构可靠性分析
隐式极限状态函数
支持向量机回归
LCVT抽样方法
均匀映射
structural reliability analysis
implicit limit state function
support vector machine regression
LCVT sampling method
uniform mapping