摘要
含无约束条件支持向量机的目标函数具有不光滑性,使得研究者难以采用快速的最优化算法对其进行求解.为了克服支持向量机的不可微性,文章首先应用有理逼近的方法,提出了一种新的Padé32逼近式光滑函数并建立了基于该函数的光滑支持向量机模型.其次,分析并证明了新光滑函数的逼近精度均高于已有的各种光滑函数,以及新模型的收敛性.最后,基于UCI机器学习数据库,将本文构造的Padé32–SSVM模型应用于若干种疾病的诊断、钞票验伪和生物可降解性分析中,结果表明本文建立的新光滑支持向量机模型具有较高的分类精度.
The objective function of support vector machine(SVM)without constraints is non-smooth,which makes it difficult to solve problems with optimization algorithm.To overcome non-smooth property of this model,a new Pad′e32 approximation smooth function is proposed,based on rational approximation method.Then,a new SSVM based on Pad′e32 smooth function is established.Theoretical analysis proved that the smooth precision is significantly higher than existing smooth functions.Moreover,theorem proof is given to demonstrate the convergence of the new model.Finally,based on the UCI machine learning database,the Pad′e32–SSVM model is applied to the diagnosis of several diseases,banknote verification and biodegradability analysis.The results show that the new model has a high classification accuracy.
作者
王建建
何枫
吴子轩
陈丽莉
WANG Jian-jian;HE Feng;WU Zi-xuan;CHEN Li-li(Donlinks School of Economics and Management,University of Science and Technology Beijing,Beijing 100083,China;School of Economics and Management,Tsinghua University,Beijing 100084,China)
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2018年第9期1302-1310,共9页
Control Theory & Applications
基金
国家自然科学基金项目(71673022,71701016),北京市自然科学基金项目(9174038),北京社会科学基金项目(17LJB004),中央高校基本科研业务费用项目(FRF–0T–17–018)资助.