期刊文献+

Padé32光滑支持向量机模型的构造及其应用 被引量:2

Construction of Padé32 smooth support vector machine model and its application
下载PDF
导出
摘要 含无约束条件支持向量机的目标函数具有不光滑性,使得研究者难以采用快速的最优化算法对其进行求解.为了克服支持向量机的不可微性,文章首先应用有理逼近的方法,提出了一种新的Padé32逼近式光滑函数并建立了基于该函数的光滑支持向量机模型.其次,分析并证明了新光滑函数的逼近精度均高于已有的各种光滑函数,以及新模型的收敛性.最后,基于UCI机器学习数据库,将本文构造的Padé32–SSVM模型应用于若干种疾病的诊断、钞票验伪和生物可降解性分析中,结果表明本文建立的新光滑支持向量机模型具有较高的分类精度. The objective function of support vector machine(SVM)without constraints is non-smooth,which makes it difficult to solve problems with optimization algorithm.To overcome non-smooth property of this model,a new Pad′e32 approximation smooth function is proposed,based on rational approximation method.Then,a new SSVM based on Pad′e32 smooth function is established.Theoretical analysis proved that the smooth precision is significantly higher than existing smooth functions.Moreover,theorem proof is given to demonstrate the convergence of the new model.Finally,based on the UCI machine learning database,the Pad′e32–SSVM model is applied to the diagnosis of several diseases,banknote verification and biodegradability analysis.The results show that the new model has a high classification accuracy.
作者 王建建 何枫 吴子轩 陈丽莉 WANG Jian-jian;HE Feng;WU Zi-xuan;CHEN Li-li(Donlinks School of Economics and Management,University of Science and Technology Beijing,Beijing 100083,China;School of Economics and Management,Tsinghua University,Beijing 100084,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2018年第9期1302-1310,共9页 Control Theory & Applications
基金 国家自然科学基金项目(71673022,71701016),北京市自然科学基金项目(9174038),北京社会科学基金项目(17LJB004),中央高校基本科研业务费用项目(FRF–0T–17–018)资助.
关键词 机器学习 光滑支持向量机模型 Pad′e32光滑函数 分类 BFGS–Armijo算法 machine learning smooth support vector machine Pad′e32 smooth function classification BFGS–Armijo algorithm
  • 相关文献

参考文献4

二级参考文献13

  • 1段萍,张建畅,丁承君,张明路.基于模糊遗传算法的移动机器人墙跟踪控制策略[J].控制理论与应用,2006,23(3):416-420. 被引量:8
  • 2Kennedy J,Eberhart R. Particle swarm optimization[C] //Proc of IEEE Int Conf on Neural Networks. Perth, Australia: IEEE Press, 1995:1942-1948.
  • 3Eberhart R, Kenney J. A new optimizer using particle swarm theory[C] // Proc of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan: IEEE Press, 1995:39-43.
  • 4Vapnik V N. The nature of statitiseal learning theory [M]. New York: Spring-Verlag Press, 1995.
  • 5Bai Jing, Guo Yueling, Zhang Xueying. Speech recognition based on a compound kernel support vector machine [, C] // Proceedings of the 11th International Conference on Communication Technologies 2008 (ICCT2008). [S. l. ] : IEEE,2008 : 696 - 699.
  • 6Kuncheva L. Clustering-and-selection model for classifier combination[C] // Proceedings of the 4th International Conference on Knowledge-based Intelligent Engineering Systems (KES'2000). Brighton, UK : [s. n. ], 2000: 1275 - 1280.
  • 7Androutsopoulos I, Koutsias J, Chandrinos K V, et al. An evaluation of Naive Bayesian anti-spare filtering[C]//Proceedings of the Workshop on Machine Learning in the New Information Age,llth European Conference on Machine Learning. Barcelona, Spain: [s. n.], 2000: 9-17.
  • 8段勇,崔宝侠,徐心和.进化强化学习及其在机器人路径跟踪中的应用[J].控制与决策,2009,24(4):532-536. 被引量:6
  • 9艾孜买提.热合木吐拉,艾克热木.玉素甫,帕尔哈提.沙依木,派祖拉.马木提,王海江.胃癌不同部位可根治性手术的生存率分析[J].现代预防医学,2010,37(20):3957-3960. 被引量:5
  • 10YUAN, YX,BYRD, RH.NON-QUASI-NEWTON UPDATES FOR UNCONSTRAINED OPTIMIZATION[J].Journal of Computational Mathematics,1995,13(2):95-107. 被引量:25

共引文献137

同被引文献9

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部