摘要
With the technical development of new warhead designs and improvised explosive device protection,irregular casing filled with explosive has been paid more attention recently. In this paper, we studied the fragmentation of a type of D-shaped casing, which is a common asymmetric casing in the field of warhead design. Based on the radiograph technique, static explosive experiments were conducted with D-shaped casings under four different eccentric initiation ratios to explore their fragmentation. A numerical model was then established to simulate the dynamic response of D-shaped casing filled with explosive. The results of numerical simulation were found to agree well with the experimental data.According to the results of numerical simulation and experimental data, the dynamic responses of Dshaped casing were analyzed. The results of the current work pave way for the innovative design of new warhead and for further studying the dynamic response of asymmetric casing.
With the technical development of new warhead designs and improvised explosive device protection,irregular casing filled with explosive has been paid more attention recently. In this paper, we studied the fragmentation of a type of D-shaped casing, which is a common asymmetric casing in the field of warhead design. Based on the radiograph technique, static explosive experiments were conducted with D-shaped casings under four different eccentric initiation ratios to explore their fragmentation. A numerical model was then established to simulate the dynamic response of D-shaped casing filled with explosive. The results of numerical simulation were found to agree well with the experimental data.According to the results of numerical simulation and experimental data, the dynamic responses of Dshaped casing were analyzed. The results of the current work pave way for the innovative design of new warhead and for further studying the dynamic response of asymmetric casing.
基金
supported by the National Natural Science Foundation of China [grant number 11772059]
the National KeyResearch and Development Program of China [grant number 2017yfc0822300]
the 111 Project[grant number G20012017001]
the Foundation of State Key Laboratory of Explosion Science and Technology of China[grant number KFJJ13-1Z]