期刊文献+

基于表面增强拉曼光谱的光纤生化传感器 被引量:5

Optical Fiber Biochemical Sensor Based on Surface Enhanced Raman Spectra
下载PDF
导出
摘要 基于生化分子检测技术高灵敏度、小型化的需求,通过简单的管式腐蚀法制成一种锥柱组合型光纤探针,并通过相反的静电引力将银纳米颗粒结合到硅烷化的二氧化硅光纤探针表面。用罗丹明6G(R6G)溶液的检测极限来表征该光纤探针的活性和灵敏度,通过优化银纳米颗粒的自组装时间为30 min、光纤探针直径为62μm,制备出高灵敏度的光纤表面增强拉曼散射探针,远端检测R6G的检测极限可达到10-14mol/L,银纳米颗粒的增强因子为1.36×104。因此,该光纤表面增强拉曼散射探针在分子检测方面有巨大的应用前景。 The demand of high sensitivity and miniaturization based on biochemical molecular detection technology,a taper and cylinder combination type fiber probe is made by adopting a simple tube corrosion method.And silver nanoparticles are bound to the surface of a silanized silicon dioxide fiber probe through opposite electrostatic forces.By utilizing the detection limit of a rhodamine 6G(R6G)solution to manifest both the activity and the sensitivity of the fiber probe,and further optimizing the self-assembly time of the silver nanoparticles to 30 min and the diameter of the fiber probe to 62μm When the concentration of a silver sol solution is constant,a high-sensitivity fiber surface-enhanced Raman scattering(SERS)probe can be prepared.Through far-end detection,the detection limit of the rhodamine 6G can reach 10-14 mol/L,and the enhancement factor is 1.36×10 4.Therefore,the fiber surface-enhanced Raman scattering(SERS)probe has large application foreground in molecular detection.
作者 苏楠 SU Nan(Department of Mechanical and Electrical Engineering,Shanxi Architectural College,Taiyuan 030006,China)
出处 《电子器件》 CAS 北大核心 2018年第5期1264-1268,共5页 Chinese Journal of Electron Devices
关键词 光纤探针 表面增强拉曼散射 灵敏度 fiber probe surface enhanced Raman scattering sensitivity
  • 相关文献

参考文献1

二级参考文献16

  • 1李鹏,李昕欣,王跃林.用于化学气体检测的压阻检测式二氧化硅微悬臂梁传感器[J].传感技术学报,2007,20(10):2174-2177. 被引量:9
  • 2包涵菡,李昕欣,张志祥,王跃林,于海涛,刘民.基于锁相环接口电路的高性能扭转谐振模态微悬臂梁传感器研究[J].传感技术学报,2007,20(10):2234-2238. 被引量:7
  • 3陈雪萌,李昕欣,宋朝晖,王跃林,黄晖,黄树森,张鲲.一种新结构硅微机械压阻加速度计[J].传感技术学报,2005,18(3):500-503. 被引量:12
  • 4Seo J, Brand O. High Q-Factor in-Plane-Mode Resonant Microsensor Platform for Gaseous/Liquid Environment [ J ]. J. Microelectromech. S. ,2008,17 ( 2 ) :483-493.
  • 5Hansen K M, Thundat T. Microcantilever Biosensors[ J ]. Methods, 2005,37 ( 1 ) :57-64.
  • 6Baltes H, Paul O, Brand O. Micromachined Thermally Based CMOS Microsensors [ J ]. P. IEEE ,2002 ,86 ( 8 ) : 1660-1678.
  • 7Ballantine D S, White R M, Martin S J, et al. Acoustic Wave Sensors [ M ]. San Diego : Academic Press, 1997.
  • 8Gaspar J,Chu V, Conde J P. Amorphous Silicon Electrostatic Microresonators with High Quality Factors [ J ]. Appl. Phys. Lett. , 2004,84 : 622-624.
  • 9Yazdi N, Ayazi F, Najafi K. Micromachined Inertial Sensors [ J ]. P.IEEE ,2002 ,86 ( 8 ) : 1640-1659.
  • 10Hyun S J, Kim H S, Kim Y J, et al. Mechanical Detection of Liposomes Using Piezoresistive Cantilever [ J ]. Sens. Actuators B Chem. ,2006,117 ( 2 ) :415-419.

共引文献4

同被引文献54

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部