期刊文献+

融合小波和LBP-GD特征的人脸表情识别 被引量:7

Feature Fusion of Wavelet and LBP-GD for Facial Expression Recognition
下载PDF
导出
摘要 针对局部二值模式(LBP)不能描述纹理方向变化的问题,提出了一种融合了梯度方向的LBP-GD算子。LBP-GD算子不仅保持了LBP本身的优点,还可以细致刻画纹理的方向信息。由于人脸表情器官所蕴含信息的差异性,设计了一种不规则的分块方式,把图像分为9个互不重叠的子块并且设置不同的权值系数,然后提取每个子块的LBP-GD特征。最后,将LBP-GD特征与提升小波的低频分量特征加权融合,用K近邻方法进行分类。在JAFFE和Cohn-Kanade表情库上验证了该方法的有效性。实验结果表明,该方法比单独使用LBP-GD特征和提升小波特征具有更好的识别效果。 Aiming at the problem that local binary pattern(LBP)cannot describe the change of texture direction,an LBP-gradient direction(LBP-GD)operator which combines gradient direction with LBP is proposed.LBP-GD operator not only keeps the advantages of LBP,but also describes texture direction in detail.Due to the difference of information contained in facial expression organs,an irregular dividing method is designed.The image is divided into 9 non-overlapping sub-blocks with different weighted values,then LBP-GD feature of each sub-block is extracted.Finally,the LBP-GD feature is weightily fused with low-frequency components obtained by lifting wavelet(LW)transform,and the K-nearest neighbor classifier is applied for expression classification.The effectiveness of this approach has been demonstrated on the JAFFE and Cohn-Kanade facial expression databases.Experimental results show that the proposed method achieves better performance than LW and LBP-GD feature alone.
作者 张良 李玉 刘婷婷 郝凯锋 ZHANG Liang;LI Yu;LIU Ting-ting;HAO Kai-feng(Key Laboratory of Advanced Signal and Image Processing,Civil Aviation University of China Dongli Tianjin 300300)
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2018年第5期654-659,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金民航联合研究基金(61179045)
关键词 面部表情识别 K近邻方法 LBP-GD特征 提升小波 facial expression recognition K-nearest neighbor method lifting wavelet LBP-GD feature
  • 相关文献

参考文献6

二级参考文献80

  • 1聂祥飞,郭军,杨震.基于小波变换的人脸检测[J].北京邮电大学学报,2006,29(3):114-117. 被引量:5
  • 2高世伟,郭雷,杜亚琴,杨宁,陈亮.提升小波变换及其在图像处理中的应用[J].计算机工程与设计,2007,28(9):2066-2069. 被引量:11
  • 3刘晓旻,章毓晋.基于Gabor直方图特征和MVBoost的人脸表情识别[J].计算机研究与发展,2007,44(7):1089-1096. 被引量:26
  • 4Manglik P, Misra U, Bindu M H. Facial expression recognition [C]. IEEE International Conference on Systems Man and Cyber- netics, Netherlands: Hague, 2004,3 : 2220-2225.
  • 5Naresh Babu N T, Fathima A A, Vaidehi V. An efficient face recognition system using DWT-ICA features [C]. Interc_ational Conference on Digital Image Computing: Techniques and Appli- cations, Australia: Noosa, 2011 : 146 151.
  • 6Ercelebi E, Koc S. Lifting-based wavelet domain adaptive wiener filter for image enhaneement[J]. IEEE Image Signal Process, 2006,153(1) : 31-36.
  • 7Xiong H L, Swamy M N S, Ahmad M O. Two-dimensional FLD for face recognition[J].Pattern Recognition, 2005,38(7) : 1121-1124.
  • 8Susskind J M~ Littlewort G~ Bartlett M S; et al. Human and computer recognition of facial expressions of emotion[J]. Neuro psycholog 2007,45(1) : 152-162.
  • 9Buciu I, Kotropoulos C, Pitas I. ICA and Gabor representation for facial expression recognition[C]. The International Confer ence on Image Processing (ICIP), Spain: Barcelona, 2003, 2: 855-863.
  • 10Cheng F, Yu J S, Xiong H L. Facial expression recognition in JAFFE dataset based on Gaussian process classification [J]. IEEE Transactions on Neural Network, 2010, 21 (10): 1685- 1690.

共引文献76

同被引文献51

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部