期刊文献+

一族离散的刘维尔可积系及其耦合系统

A Hierarchy of Discrete Liouville Integrable System and Its Coupling System
下载PDF
导出
摘要 利用屠格式的方法得到了一族刘维尔可积系,验证了其具有双哈密顿结构,并借助李代数的半直和方法构造了其可积耦合系统. A Hierarchy of discrete Liouville integrable system is derived by use of Tu scheme.It is proved that it possesses bi-Hamiltonian structure.Then,the integrable couplings of the obtained system is constructed by virtue of semi-direct sums of Lie algebras.
作者 李柱 LI Zhu(College of Mathematics and Statistics,Xinyang Normal University,Xinyang 464000,China)
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2018年第4期525-529,共5页 Journal of Xinyang Normal University(Natural Science Edition)
基金 河南省高等学校重点科研项目(17A110029) 信阳师范学院"南湖学者奖励计划"青年项目资助
关键词 等谱问题 哈密顿结构 耦合系统 isospectral problem Hamilton structure coupling system
  • 相关文献

参考文献3

二级参考文献18

  • 1ZENGYUNBO,LIYISHEN.NEW SYMPLECTIC MAPS: INTEGRABILITY AND LAX REPRESENTATION[J].Chinese Annals of Mathematics,Series B,1997,18(4):457-466. 被引量:3
  • 2DONG Huan-He ZHANG Ning.A Multi-component Matrix Loop Algebra and Its Application[J].Communications in Theoretical Physics,2005,44(6X):997-1001. 被引量:4
  • 3Ma W X.Symmetry constraint of MKdV equations by binary nonlinearation[J].Journal of Physics A:Mathematical and General,1995,219:1083-1091.
  • 4Ma w X,Gan L.Coupling integrable couplings[J].Mod Phys Lett B,2009,23(15):1847-1860.
  • 5Hu X B.A powerful approach to generate new integrable systms[J].Joumal of Physics A:Mathematical and General,1994,27:2497-2541.
  • 6Ma W X,Xu X X.A modified Toda spectral problem and its hierarchy of bi-Hamiltonian lattice equations[J].Journal of Physics A:Mathemati-cal and General,2004,37:1323-1336.
  • 7Ma W X,Fuchssteiner B.Integrable theory of the perturbation equations[J].Chaos,Solitom and Fractals,1996,7:1227-1250.
  • 8Hu X B,Tam H.Applications of Hirota's bilinear formalism to a two dimensional lattice by Leznov[J].Phys Lett A,2000,276:65-72.
  • 9Zhang Y F,Honwah.A few new higher-dimensional Lie algebras and two types of coupling integrable couplings of the AKNS hierarchy and the KNhierarchy[J].CNSNS(2010),Doi:10.1016/j.cnsns.2010.03.004.
  • 10Hu X B,Clarkson P A.Rational solutions of an extended Lokta-Voltrra equation[J].J Non Math Phys,2002,9(Suppl):75-86.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部