期刊文献+

基于小波变换和算术编码的无损图像压缩方法研究(英文) 被引量:3

Research on lossless image compression method based on wavelet transform and arithmetic coding
下载PDF
导出
摘要 为了提高图像压缩的性能以便实现更好的无损图像压缩,提出了一种基于小波变换和算术编码的无损图像压缩方法。首先,该方法对图像的所有高频和低频分量进行整数小波变换。然后利用期望最大化算法和最大似然估计对几何分布有限混合模型的参数进行了估计。最后结合直方图截断方法完成算术编码。多组图像数据的测试结果显示相比于其他方法,提出压缩方法表现出较好的压缩性能(主观和客观保真度指标),即更高的压缩比和峰值信噪比。 In order to improve the performance of image compression so as to achieve better lossless image compression,a lossless image compression method based on wavelet transform and arithmetic coding is proposed in this paper.First of all,this method performs integer wavelet transform on all the high-frequency and low-frequency components of the image.Then,the parameters of the finite mixture model with geometric distribution are esti mated by using the expectation maximization algorithm and the maximum likelihood estimation.Finally,the arithmetic coding is completed by the method of histogam truncation.The test results of multiple sets of image data show that compared with other methods,the proposed compression method has better compression performance(subjective and objective fidelity index),i.e.,higher compression ratio and peak signal-to-noise ratio.ood estimation.Finally,the arithmetic coding is completed by the method of histogam truncation.The test results of multiple sets of image data show that compared with other methods,the proposed compression method has better compression performance(subjective and objective fidelity index),i.e.,higher compression ratio and peak signal-to-noise ratio.
作者 刘海涛 汪斌 Hai-tao LIU;Bin WANG(School of Mechanical,Electronic and Control Engineering,Beijing Jiaotong University,Beijing 100044,China;Department of Information and Management Engineering,Inner Mongolia Technical College of Mechanics ag Electrics,Hohhot 110070,China;School of Computer Science,Beijing Jaotong University,Beijing 100044,China)
出处 《机床与液压》 北大核心 2018年第18期32-37,共6页 Machine Tool & Hydraulics
基金 Science Research Project of Higher Education in Inner Mongolia Autonomous Region(NJZY17469)
关键词 无损图像压缩 整数小波变换 算术编码 压缩比 PSNR Lossless image compression Integer wavelet transform Arithmetic coding Compression ratio PSNR
  • 相关文献

参考文献4

二级参考文献47

  • 1白璘,刘盼芝,李光.一种基于Contourlet变换的高光谱图像压缩算法[J].计算机科学,2012,39(S3):395-397. 被引量:6
  • 2侯威,封国林,董文杰.基于复杂度分析logistic映射和Lorenz模型的研究[J].物理学报,2005,54(8):3940-3946. 被引量:30
  • 3QIAN S E. Hyperspectral data compression using a fast vector quantization algorithm[J]. IEEE Trans actions on Geoscience and Remote Sensing, 2004, 42 (8):1791 1798.
  • 4WU X I., MEMON N. Context-based, adaptive, lossless image coding[J].IEEE Transactions on Communications, 1997, 45(4) :437-444.
  • 5WU X L, MEMON N. Context based lossless inter- band compression extending CALIC [J]. IEEE 994-1001.
  • 6MAGI.I E, OLMO G, QUACCHIO E. Optimized onboard lossless and nealossless compression of hyperspectral data using CALIC [J]. IEEE Geosci ence and Remote Sensing Letters, 2004, 1 (1) : 21-25.
  • 7TATE S. Band ordering in lossless compression of multispectral images [C]. Proceedings of the IEEE Data Compression Conference, Utah , 1994:311-320.
  • 8ZHANG J, LIU G Z. An efficient reordering pre- diction-based lossless compression algorithm for hyperspectral images EJ. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2) :283-287.
  • 9KIELY A B, KLIMESH M A. Exploiting calibra- tion induced artifacts in lossless compression of hyperspectral imageryJ2. IEFE Transactions on Geoscience and Remote Sensing, 2009, 47 (8).. 2672 2678.
  • 10RIZZO F, CARPENTIERI B, MOTTA G, etal.. Low-complexity lossless compression of hyper spectral imagery via linear prediction EJ. IEEE Si,gna! Processing Letters, 2005, 12(2) :138 141.

共引文献22

同被引文献40

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部