期刊文献+

大数据环境下基于Hadoop平台的医学数据挖掘算法研究(英文) 被引量:9

Research on medical data mining algorithm based on Hadoop platform in big data environment
下载PDF
导出
摘要 为了有效利用云平台Hadoop框架的并行处理能力。通过对大数据挖掘技术中的传统关联规则算法-Apriori算法进行了分析和改进,提出了一种基于Map Reduce并行模式的改进数据挖掘算法,适用于医学大数据的分析和应用。首先通过布尔排列优化数据库中事务数据的存储方式,从而有效减少数据库被扫描的次数。然后采用关联规则优化减少Apriori算法中冗余的子集。为了验证改进算法的有效性,采用医学历史数据进行实验验证。最后仿真实验结果显示,相比传统的Apriori算法,提出算法的运行效率更高,具有较好的可靠性和有效性。 In order to effectively use the parallel processing capabilities of the cloud platfomi Hadoop framework,an improved data mining algorithm based on Map Reduce parallel mode is proposed by analyzing and improving a traditional association rles algorithm-Aprori algorithm which belong to big data mining technolog,which is suitable for the analysis and application of medical big data.First,the Boolean arrangement is used to optimize the storage mode of transaction data in the database,and it will effectively reduce the number of database scanned.Then,the association rule optimization is used to reduce the redundant subsets in the Apriori algorithm.In order to veiify the effectiveness of the improved algorithm,medical history data is used to verify the experiment.Finally,the simulation results show that the proposed algorithm is more efficient and has better reliability and validity as compared with the traditional Apror algorithm.
作者 姜广坤 Guang-kun JIANG(Dalian Ocean University,Dalian 116300,China)
机构地区 大连海洋大学
出处 《机床与液压》 北大核心 2018年第18期163-168,共6页 Machine Tool & Hydraulics
基金 Liaoning Province Education Department Scientific Planning Project(JG15EB019) Liaoning Province Higher Education Academic Research Project of the 12th Five-Year Plan(GHJT201502107)
关键词 数据挖掘 关联规则 云平台 APRIORI算法 医学数据 Data mining Association rules Cloud platform Apiiori algorithm Medical data
  • 相关文献

参考文献3

二级参考文献29

  • 1周焕银,张永,蔺鹏.一种不产生候选项挖掘频繁项集的新算法[J].计算机工程与应用,2004,40(15):182-185. 被引量:14
  • 2Witten I H.Frank E.Data Mining:Practical Machine Learning Tools and Techniques[M].北京:机械工业出版社,2006.
  • 3Tan Pangning, Steinbach M, Kumar V. Introduction to DataMining[M].北京:人民邮电出版社,2006.
  • 4Han Jiawei,Micheline Kamber.Data mining:Concepts and techniques[M].北京:机械工业出版社,2001.
  • 5Agrawal R, Imieliski T, Swami A. Mining association rulesbetween sets of items in large databases [ C ] // Proceedingsof the 1993 ACM SIGMOD International Conference onManagement Data. 1993,22(2) :207-216.
  • 6Savasere A, Omiecinski E,Navathe S. An efficient algo-rithm for mining association rules in large databases[ C]//Proceedings of the 21st VLDB Conference. 1995.
  • 7Toivonen H. Sampling large databases for association rules[C]// Proceedings of the 22th VLDB Conference. 1996 :134-145.
  • 8Park J S,Chen M S,Yu P S. An effective hash based al-gorithm for mining association rules [ C]// Proceedings ofthe 1995 ACM SIGMOD International Conference on Man-agement of data. 1995,24(2) :175-186.
  • 9Agrawal R, Srikant R. Fast algorithm for mining associationrules[ C]// Proceedings of the 20th International Conferenceon Very Large Data Bases (VLDB). 1994:487499.
  • 10Han Jiawei, Pei Jian, Yin Yiwen. Mining frequent patternswithout candidate generation [ C ]// Proceedings of the2000 ACM SIGMOD International Conference on Manage-ment of Data. 2000,29(2) : 1-12.

共引文献67

同被引文献113

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部