期刊文献+

基于粒子群优化粒子滤波的电容剩余寿命预测 被引量:6

Remaining useful life prediction of electrolytic capacitor based on particle swarm optimization particle filter
下载PDF
导出
摘要 在电路系统中,电解质电容的故障与否对电路的健康状态有着很大的影响。提出应用一种粒子群优化粒子滤波算法对电解质电容进行状态估计以及剩余寿命的预测。该算法使用NASA已公布的电容数据集,建立一种指数结合多项式的经验退化模型,用粒子群优化算法优化粒子滤波算法中的序贯重采样环节,改善粒子滤波中的粒子贫化问题,实现更准确的电解质电容剩余寿命预测。 In the electrical system,whether the electrolytic capacitors suffer failure influences the health of the circuits enormously.This paper proposes to apply an improved Particle Filter(PF)which is optimized by using the Particle Swarm Optimization algorithm(PSO)to estimate the state and prognostic the Remaining Useful Life(RUL)of the electrolytic capacitors.The algorithm uses the electrolytic capacitors degradation datasets from NASA to establish a model combined the exponential model and the polynomial model,and PSO is applied to optimize the step of sequential important resampling in PF and improve particle impoverishment.The improved prognostic method can predict RUL of the electrolytic capacitor more accurately.
作者 秦琪 赵帅 陈绍炜 黄登山 QIN Qi;ZHAO Shuai;CHEN Shaowei;HUANG Dengshan(School of Electronics and Information,Northwestern Polytechnical University,Xi’an 710129,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第20期237-241,258,共6页 Computer Engineering and Applications
基金 航空科学基金项目(No.20155553039)
关键词 电路系统 电解质电容 预测 剩余寿命 electrical system electrolytic capacitor prognostic remaining useful life
  • 相关文献

参考文献3

二级参考文献44

  • 1Doucet A, Godsill S J, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statis- tics and Computing. 2000.10( 3 ) : 197-208.
  • 2Doucet A, Godsill S J, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statis- tics and Computing, 2000, 10(3) : 197-208.
  • 3Julier S J,Uhlmann J K. Unscented filtering and nonlinear estimation[J]. IEEE Trans. Signal Processing, 2004,92 (3):401-422.
  • 4HU Zhao-hua, SONG Yao-liang, LIANG De-qun, et al. A particle filter based tracking algorithm with cue fusion un- der complex background[J] Journal of Optoelectronics · Laser,2008,19(5) :680-685.
  • 5WU Chun-lin,HAN Chong-zhae. Quadrature Kalman parti- cle filter[J]. Systems Engineering and Electronics, 20]0, 21(2) :175-179.
  • 6Yang Y X, Gao W G. An optimal adaptive Kalman filter [J]. Journal of Geodesy, 2006,80(4) : 177-183.
  • 7Vasileios Maroulas, Panos Stinis. Improved particle filters for multi-target tracking [J]. Journal of Computational Physics,2012,23(1) :602-611.
  • 8陈召洪.“锂想国”探秘:新能源汽车带来的春之律动[R].万联证券新能源研究小组动力锂电池深度研究报告.2010,09.
  • 9de Campos Ferreira J C B, Waldmann J. Covarianee in- tersection-based sensor fusion for sounding rocket tracking and irapact area predietion[J ]. Control Engineering Prac- tice, 2007(15): 389-409.
  • 10Cheng C, Ansari R. Kernel particle filter for visual track ing[J ]. IEEE Signal Processing Letters, 2005, 12 (3) 242-245.

共引文献13

同被引文献45

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部