期刊文献+

基于Faster R-CNN模型的火焰检测 被引量:13

Flame Detection Based on Faster R-CNN Model
下载PDF
导出
摘要 常规的火焰检测一般是提取火焰的静态或动态特征,然后进行火焰的判别.但是传统特征无法全面描述火焰特性,会导致识别的准确率降低.本文提出一种基于Faster R-CNN模型的火焰检测算法.首先利用候选区域生成网络(Region Proposal Network,RPN)提取火焰候选区域,然后对候选区域进行卷积及池化操作,提取火焰特征,最后利用联合训练的快速区域卷积神经网络(Fast R-CNN)进行火焰识别.实验结果表明该方法能够自动提取火焰特征,有效提高复杂背景下的火焰识别的准确率,具有良好的泛化能力和鲁棒性. Usually the static or dynamic characteristics of the flame is extracted for flame detection.But the traditional characteristics can not fully describe the characteristics of flame,which leads to the reduction of recognition accuracy.To solve this problem,a flame detection based on Faster R-CNN model is proposed in this paper.First,the candidate region of the flame is extracted by RPN.Then the convolution and pool operation of candidate regions are performed to extract the flame characteristics.Finally,Fast R-CNN is used to identify the flame.The experimental results show that the method can automatically extract the flame characteristics,effectively improve the accuracy of flame recognition in the complex background,and have good generalization ability and robustness.
作者 严云洋 朱晓妤 刘以安 高尚兵 Yan Yunyang;Zhu Xiaoyu;Liu Yi’an;Gao Shangbing(Faculty of Computer&Software Engineering,Huaiyin Institute of Technology,Huaian 223003,China;School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China)
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2018年第3期1-5,共5页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金(61402192) 江苏省"六大人才高峰"项目(2013DZXX-023) 江苏省"青蓝工程" 淮安市"533英才工程"
关键词 FASTER R-CNN 候选区域生成网络 快速区域卷积神经网络 火焰检测 Faster R-CNN RPN Fast R-CNN flame detection
  • 相关文献

参考文献6

二级参考文献31

  • 1张进华,庄健,杜海峰,王孙安.一种基于视频多特征融合的火焰识别算法[J].西安交通大学学报,2006,40(7):811-814. 被引量:38
  • 2LIU Min, LIU Wei zhong,ZHANG Dao-li. A new approach for sa- lient motion in dynamic scenes[C]//Fifth International Conference on Machine Vision, 2012, Wuhan, 2013.
  • 3Doretto G, Chiuso A,Wu Y N, etal. Dynamic textures[J] Inter national Journal of Computer Vision, 2003,51(2) :91-109.
  • 4Gopalakrishnan V, Rajan D, Hu Y. A Linear Dynamical System Framework for Salient Mot-tion Detection [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22 (5) : 683 - 692.
  • 5Celik T,Demirel H,Ozkaramanli H,et al.Fire detection using statistical color model in video sequences[J].Journal of Visual Communication and Image Representation,2007,18 (2):176-185.
  • 6Cho Bo-Ho,Bae Jong-Wook,Jung Sung-Hwan.Image processing-based fire detection system using statistic color model[C]//International Conference on Advanced Language Processing and Web Information Technology.New York:IEEE,2008:245-250.
  • 7Ugur T(o)reyin B.Fire detection algorithms using multimodal signal and image analysis[D].Ankara,Turkey:Bilkent University,2009.
  • 8Martin Mueller,Peter Karasev,Ivan Kolesov,et al.Optical flow estimation for flame detection in videos[J].IEEE Transaction on Image Processing,2013,22 (7):2786-97.
  • 9Yusuf Hakan Habibo(g)lu,Osman Günay,Enis(c)etin A.Covariance matrix-based fire and flame detection method in video[J].Machine Vision and Applications,2012,23 (6):1103-1113.
  • 10高爱莲,刘辉,林宏,王汉友.基于视频的火焰检测技术研究[J].云南民族大学学报(自然科学版),2008,17(1):94-96. 被引量:8

共引文献122

同被引文献84

引证文献13

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部