期刊文献+

基于个性化的多样性优化推荐算法 被引量:14

Recommendation Algorithm for Optimizing Diversity Based on Personalization
下载PDF
导出
摘要 针对不同人对多样性的偏好不同,提出一种能够在寻优精度和多样性之间权衡的个性化的多样性优化方法.该方法采用一种依据用户历史偏好和项目类别专家评分的推荐技术,生成包含新颖项目和关联项目的多样化的候选推荐列表,然后依据用户多样化偏好程度进行后过滤技术,筛选出最终的多样化推荐列表.最后,本文通过实验结果对比发现,所提出的方法能够有效地提高推荐列表的多样性,而且能够实现个性化的多样化过程. A recommendation algorithm for optimizing diversity based on personalization,which is capable of controlling the trade-off between accuracy and diversity,is proposed for different people's preference for diversity.The method,utilizing the recommendation technique which relies on historical user preferences and expert evaluation of project categories,generates a diversified candidate recommendation list including new projects and related projects.Then according to user’s diversity preference,the post-filtering approaches are employed to generate the final diversified recommendation list.Finally,the experiments and evaluation show that the proposed method can effectively improve the diversity of recommender lists,and achieve personalized diversification process.
作者 姜书浩 张立毅 张志鑫 Jiang Shuhao;Zhang Liyi;Zhang Zhixin(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China;School of Information Engineering,Tianjin University of Commerce,Tianjin 300134,China)
出处 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2018年第10期1042-1049,共8页 Journal of Tianjin University:Science and Technology
关键词 推荐系统 多样性 个性化 新颖性 关联性 recommender diversity personalization novelty relevance
  • 相关文献

参考文献1

二级参考文献18

  • 1Kima Hyunki, Chen Sushing. Associative naive Bayes classifier: Automated linking of gene ontology to medline documents [J]. Pattern Recognition, 2009, 42 (9) : 1777- 1785.
  • 2Joachims T. A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization [C] //Proe of the 14th Int Conf on Machine Learning. San Francisco: Morgan Kaufmann, 1997, 143-151.
  • 3Forman G. BNS feature scaling: An improved representation over tf-idf for SVM text classification [C] //Proc of the 17th ACM Conf on Information and Knowledge Management. New York: ACM, 2008:263-270.
  • 4Vateekul P, Kubat M. Fast induction of multiple decision trees in text categorization from large scale, imbalanced, and multi-label data [C] //Proc of the 2009 IEEE Int Conf on Data Mining Workshops. Piseataway, NJ: IEEE, 2009: 320-325.
  • 5Yin S Q, Wang F, Xie Z, Qiu Y H. Study on Web page classification algorithm based on rough set theory [C] //Proc of Int Symp on Information Processing/Int Pacific Workshop on Web Mining and Web-Based Application. Piscataway, NJ: IEEE, 2008:202-206.
  • 6Ciarelli P M, Oliveira E. An enhanced probabilistic neural network approach applied to text classification [C]//Proe of the 14th Iberoamerican Conf on Pattern Recognition: Rrogress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Berlin: Springer, 2009:661-668.
  • 7Uchyigit G, Clark K. A new feature selection method for text classification [J].International Journal of Pattern Recognition and Artificial Intelligence, 2007, 21 (2) : 423- 438.
  • 8Aghdam M H, Aghaee N G, Basiri M E. Text feature selection using ant colony optimization [J].Expert Systems with Applications, 2009, 36(3) : 6843-6853.
  • 9Venkatesh Karthik S, Srikant R, Madhu R M. Feature selection & dominant feature selection for product reviews using meta heuristic algorithms [C] //Proe of the 3rd Annual ACM Bangalore Conf. New York: ACM, 2010.
  • 10Joachims T. A statistical learning model of text classification for support vector machines [C] //Proc of the 24th ACM SIGIR Int Conf on Research and Development in Information Retrieval. New York: ACM, 2001:128 136.

共引文献8

同被引文献134

引证文献14

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部