期刊文献+

钛合金叶片燃烧后冷却过程的三维热流耦合数值模拟

Cooling Process of Titanium Alloy Blades After Combustion Using Three Dimensional Heat Flow Coupling Numerical Simulation
下载PDF
导出
摘要 为了理解航空发动机钛火发生后叶片的冷却过程,采用有限元方法结合ROTOR37转子模型,分别对550℃阻燃钛合金(TF550钛合金)和600℃高温钛合金(TA29钛合金)燃烧后压气机通道内温度场、流场进行数值模拟研究。结果表明:相对马赫数对于压气机通道内叶片散热有一定的影响,其中叶尖燃烧区域在0.7~1的低马赫数区域散热能力最佳;相对于前缘燃烧区域,叶尖燃烧区域的冷却过程更为复杂,且冷却速率比前缘燃烧区域低一个数量级;在叶尖燃烧区域内,TF550钛合金和TA29钛合金的冷却温度差异比较显著,在1000~2500K温度区间内的差别最大,前者比后者低100K以上,在300~500K温度区间内前者比后者低30K以内;叶尖燃烧区域流场的温度畸变会增加喘振的剧烈程度,设计叶片时应充分考虑燃烧对喘振裕度的影响。 In order to understand the cooling procedure of aviation engine blade after titanium combustion,the finite element method was used to simulate the temperature and fluid field of ROTOR37 model after combustion occurred with 550℃fire proof titanium alloy(TF550 titanium alloy)and 600℃high temperature titanium alloy(TA29 titanium alloy),respectively.The results show that the relative mach number influences the cooling procedure of blade,the cooling performance at the area of mach number about 0.7-1 is much higher than other area;compared with the leading edge,the cooling process of the tip is more complex,and the cooling rate is an order of magnitude lower than that of the leading edge.The difference of cooling temperature between TF550 titanium alloy and TA29 titanium alloy at tip combustion area is quite observable;and the maximum value occurs within the scope of 1000-2500K;the former is more than 100K lower than the latter,the value is reduced into 30K within the scope of 300-500K.The temperature distortion of the flow field would increase the intensity of the surge,the effect of combustion on the surge margin should be fully considered during the design of the blade.
作者 梁贤烨 弭光宝 李培杰 曹京霞 黄旭 LIANG Xian-ye;MI Guang-bao;LI Pei-jie;CAO Jing-xia;HUANG Xu(National Center of Novel Materials for International Research,TsinghuaUniversity,Beijing 100084,China;Aviation Key Laboratory of Scienceand Technology on Advanced Titanium Alloys,AECC Beijing Instituteof Aeronautical Materials,Beijing 100095,China;Beijing EngineeringResearch Center of Graphene and Application,Beijing 100095,China)
出处 《材料工程》 EI CAS CSCD 北大核心 2018年第10期37-46,共10页 Journal of Materials Engineering
基金 国家自然科学基金项目(51471155) 中国航发创新基金项目(2014E62149R)
关键词 钛燃烧 冷却 三维热流耦合 数值模拟 航空发动机 titanium combustion cooling three dimensional thermo-fluid couple numerical simulation aero-engine
  • 相关文献

参考文献12

二级参考文献151

共引文献240

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部