期刊文献+

仿生鲔科机器鱼的多机体协同推进效率优化 被引量:2

Optimization of Multi-Organism Cooperative Propulsion Efficiency of Bionic Thunniform Fish Robot
下载PDF
导出
摘要 推进效率是水下潜器装备运行的核心问题,对机器装备的现实应用具有至关重要的影响.针对仿鲔科鱼类研制的机器鱼,根据鲔科鱼类波状运动特征,将机器鱼体离散为由鱼体、尾鳍、胸鳍等部分组成的多刚体系统,结合鱼体所受外力载荷,运用牛顿欧拉法建立了机器鱼动力学模型.基于该动力学模型,开展了以提高机器鱼的推进效率为目标的鱼体运动参数优化设计,以机器鱼的巡游效率为目标、以鱼体各机体的运动参数为优化设计变量、选用遗传算法为优化算法,进行参数匹配优化;通过优化实现了机器鱼尾鳍、鱼体及胸鳍的多机体协同,提高了机器鱼的推进效率.针对优化匹配设计结果,进一步开展了机器鱼的运动学数值模拟仿真,结果表明机器鱼的巡游速度在数值上为鱼体长度的1. 415倍时,机器鱼的推进效率最高,其值达到最大值49. 9%. Propulsion efficiency is the core point of underwater vehicle,which produces effects on the practical application of machine equipment.In this paper,through kinematic character of the thunniform mode fish with undulatory movement,the fish robot was developed as a multi-rigid body system which could be divided into body,pectoral fin and caudal fin,combined with the external force of fish robot,the dynamic model was established with Newton-Euler method.Based on this dynamic model,with the goal of propulsion efficiency,the genetic algorithm was selected to optimize the kinematic parameters.By optimizing the multi-body coordination between fish body,tail fin and pectoral fin,the propulsion efficiency of the robot fish was improved.In connection with optimization results,the kinematics numerical simulation of robotic fish was further carried out.The results showed that at the speed of 1.415 times of the body length,the efficiency of the robot-fish was 49.9%.
作者 张开升 刘浩田 王强 张保成 ZHANG Kaisheng;LIU Haotian;WANG Qiang;ZHANG Baocheng(School of Engineering,Ocean University of China,Qingdao 266100,Shandong,China)
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第7期109-115,122,共8页 Journal of South China University of Technology(Natural Science Edition)
基金 山东省2017年重点研发计划项目(2017GHY15105)~~
关键词 仿生 机器鱼 动力学模型 多机体协同 牛顿欧拉法 推进效率 遗传算法 bionic fish robot dynamic model multi-body coordination propulsion efficiency Newton-Euler method genetic algorithm
  • 相关文献

参考文献5

二级参考文献51

  • 1王田苗,梁建宏.基于理想推进器理论的尾鳍推力与效率估算[J].机械工程学报,2005,41(8):18-23. 被引量:20
  • 2张永顺,李海亮,刘巍,贾振元.超磁致伸缩薄膜尾鳍机器鱼的仿生游动机理[J].机械工程学报,2006,42(2):37-42. 被引量:10
  • 3TRIANTAFYLLOU M S, TRIANTAFYLLOU G S. An efficient swimming machine[J]. Scientific American, 1995(5): 64-70.
  • 4LONG J H. Biomimetic robotics: Self-propelled physical models test hypotheses about the mechanics and evolution of swimming vertebrates[J]. J. Mech. Eng. Sci., 2007, 221(10): 1 193-1 200.
  • 5TRIANTAFYLLOU M S, TECHET A H, HOVER F S Review of experimental work in biomimetic foils[J] IEEE Journal of Oceanic Engineering, 2004, 29(3): 585-593.
  • 6JIA L B, Y1N X Z. Passive oscillations of two tandem flexible filaments in a flowing soap film[J]. Physical review letters, 2008, 100(22): 1-4.
  • 7WOLFGANG M J, ANDERSON J M, GROSENBAUGH M A, et al. Near-body flow dynamics in swimming fish[J]. J. Exp. Biol., 1999, 202:2 303-2 327.
  • 8ZHU Q, WOLFGANG M J, TRIANTAFYLLOU M S. Three-dimensional flow structures and vorticity control in fish-like swimming[J]. J. Fluid Mech., 2002, 468. 1-28.
  • 9LIU H, WASSERSUG R. The three-dimensional hydrodynamics of tadpole locomotion[J]. J. Exp. Biol., 1997, 200: 2 807-2 819.
  • 10DONG G J, LU X Y. Characteristics of flow over traveling wavy foils in a side-by-side arrangement[J]. Physics of fluids, 2007, 19(5): 1-11.

共引文献105

同被引文献13

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部