期刊文献+

基于八叉树编码的点云邻域搜索算法 被引量:2

Point cloud neighborhood search algorithm based on octree coding
下载PDF
导出
摘要 针对散乱空间点云数据没有明显拓扑结构的问题,为提高其数据处理速度,提出一种快速搜寻邻近点集的算法。根据点云数据的范围、点的总数确定合适立方体包围盒,采用空间三方向二分划分方法,将包围盒划分成许多子立方体,应用二进制编码表对子立方体中每个数据点建立索引号,给出新的方法对数据点进行再编码,确定邻近点的最佳搜索范围。实验结果表明,该算法能显著提高大规模散乱空间点云邻近点的搜索效率,保证搜索结果的可靠性。 To improve the speed of data processing,a fast search algorithm for adjacent point set was proposed.According to the scope of point cloud data and the total number of points,the appropriate cube bounding box was determined.The bounding box was divided into many subcategories using spatial three-direction dichotomy,and the binary code table was used to establish the index number for each data point in the sub-cube.A new method was given to re-encode the data points to determine the optimal search range of the neighboring points.Experimental results show that the proposed algorithm can improve the search efficiency of the adjacent cloud point and ensure the reliability of the search results.
作者 丁彩红 张耀 DING Cai-hong;ZHANG Yao(School of Mechanical Engineering,Donghua University,Shanghai 201620,China)
出处 《计算机工程与设计》 北大核心 2018年第10期3107-3112,共6页 Computer Engineering and Design
关键词 散乱点云 K近邻 子立方体 二进制编码表 包围盒偏移 scattered point cloud K nearest neighbor cube binary code table bounding box offset
  • 相关文献

参考文献8

二级参考文献87

  • 1熊邦书,何明一,俞华璟.三维散乱数据的k个最近邻域快速搜索算法[J].计算机辅助设计与图形学学报,2004,16(7):909-912. 被引量:65
  • 2Mitra N J, Nguyen A. Estimation Surface Normals in Noisy Point Cloud Data [C]. The 19th ACM Symposium on Computational Geometry, San Diego, CA, 2003
  • 3Jones T R, Durand F, Desbrum M. Non-iterative, Feature Preserving Mesh Smoothing[C]. The SIGGRAPH'03 Conference, San Diego, CA, 2003
  • 4Weyrich T, Pauly M, Heinzle S, et al. Post Processing of Scanned 3d Surface Data[C]. Eurographics Symposium on Point-based Graphics, Switzerland, 2004
  • 5Amenta N, Bern M, Kamvysselis M, et al. A New Voronoi-Based Surface Reconstruction Algorithm [C]. The 25th Annual ACM Conference on Computer Graphics,Orlando, 1998
  • 6Kolahdouzan M, Shahabi C. Voronoi-Based K Nearest Neighbor Search for Spatial Network Databases[C]. The 30th VLDB Conference, Toronto, Canada, 2004
  • 7DieKerson M T, Drysdale R L S, SacK J R. Simple Algorithms for Enumerating Inter-point Distances and Finding K Nearest Neighbors[J]. International Journal of Computational Geometry and Applications, 1992, 2(3):221-239
  • 8Sankaranarayanan J, Samet H, Varshney A. A Fast All Nearest Neighbor Algorithm for Applications Involving Large Point-clouds[J]. Computers & Graphics, 2007, 31:157-174
  • 9Bentley J L. Kd Trees for Semidynamic Point Sets[C]. The 6th Annual ACM Symposium on Computational Geometry, San Francisco, 1990
  • 10Arya S, Mount D M, Netanyahu N S, et al. An Optimal Algorithm for Approximate Nearest Neighbor Searching[C]. The 5th Annual ACM-SIAM Symposium on Discrete Algorithms, Arlington, VA, 1994

共引文献95

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部