期刊文献+

改进CNN及其在船舶识别中的应用 被引量:5

Improved CNN and its application in ship identification
下载PDF
导出
摘要 卷积神经网络在图像识别方面具有独特的优越性,但在实际场景中,其识别结果会受到图像背景的干扰。船舶识别中图像的背景因素极其复杂,因此,结合显著性检测算法,从图像中分离出待识别的船舶,通过卷积神经网络进行船舶识别。鉴于显著性检测很难在复杂图像中完整的分离背景和前景,提出两种改进卷积神经网络的方法,即"中心-扩散池化"卷积神经网络和"前景-扩散池化"卷积神经网络。实验结果表明,改进的卷积神经网络表现出更稳定的表征能力和更好的泛化能力,结合显著性检测算法改进的卷积神经网络在船舶识别中取得了很好的成效。 Convolution neural network has unique superiority in image identification,but in the actual scene,the recognition result is disturbed by image background.The background factor of the image in ship identification is extremely complex.Therefore,the saliency region detection algorithm was combined to separate the ship to be identified from the image,and the ship identification was carried on through the convolution neural network.In view of the fact that the saliency region detection is difficult to separate the background and the prospect in the complex images,two methods of improving the convolution neural network were proposed,namely center-diffusion pooling convolution neural network and foreground-diffusion pooling convolution neural network.Experimental results show that the improved convolution neural network exhibits more stable characterization ability and better generalization ability.Combining saliency region detection algorithm,the improved convolution neural network method achieves good results in ship identification.
作者 杨亚东 王晓峰 潘静静 YANG Ya-dong;WANG Xiao-feng;PAN Jing-jing(College of Information Engineering,Shanghai Maritime University,Shanghai 201306,China;College of Transportation and Civil Engineering,Fujian Agriculture and Forestry University,Fuzhou 350002,China)
出处 《计算机工程与设计》 北大核心 2018年第10期3228-3233,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(31170952) 国家海洋局基金项目(201305026) 上海海事大学研究生创新基金项目(2017ycx083)
关键词 显著性检测 卷积神经网络 中心-扩散池化 前景-扩散池化 船舶识别 saliency region detection convolution neural network center-diffusion pooling foreground-diffusion pooling ship identification
  • 相关文献

参考文献4

二级参考文献20

  • 1李禹,计科锋,粟毅.合成孔径雷达图像分割技术综述[J].宇航学报,2008,29(2):407-412. 被引量:22
  • 2熊正南,蔡开仕,武凤德,高宏伟.21世纪美国战略潜艇导航技术发展综述[J].舰船科学技术,2002,24(3):30-37. 被引量:26
  • 3Gagnon L, Klepko R. Hierarchical Classifier Design for Airborne SAR Images Of Ships [ EB/OL ]. ( 1998-9-18 ) [ 2011-05-17 ].http ://spie. org/x648, html? product_id = 323866.
  • 4Askari F, Zerr B. Automatic Approach to Ship Detection in Spacebome Synthetic Aperture Radar Imagery: An Assessment of Ship Detection Capability Using RADARSAT [R]. Italy: SACLANT Undersea Research Centre,2000.
  • 5Nilufen Cotuk, Sedat Turea, Mujdat Cetin. Application of Point Enhancement Technique or Ship Target Recognition by HRR [ M ]// Edmund G Zelrfio, Frederick D. Garber. Algorithms for Synthetic Aperture Radar Imagery, Bellingham: Society of Photo Optical ,2003.
  • 6Touzi R, Raney R K, Charbonneau F. On the use of permanent symmetric scatterer for ship characterization [ J ]. IEEE Transactions on Geoscience and Remote Sensing,2004,42(10): 2039-2045.
  • 7Yannick A,Mickael G,Olivier B. Ship Detection and Characterization Using Polarimetfic SAR Data [R]. Tallinn: NATO Advanced Research Workshop ,2005.
  • 8Margarit G, Mallorqui J J. Exploitation of ship scattering in polarimetric SAR for an improved classification under high clutter conditions [ J ]. IEEE Transactions on Geoscience and Remote Sensing,2009,47 (4) : 1224-1235.
  • 9Margarit G, Mallorqui J J, Fabregas X. On the usage of GRECOSAR, an orbital polarimetric SAR simulator of complex targets, to vessel classification studies [ J ]. IEEE Transactions on Geoscience and Remote Sensing,2006,44(12) : 3517-3526.
  • 10Margarit G, Mallorqui J J, Fabregas X. Single-pass polarimetrie SAR interferometry for vessel classification[ J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45 (11) : 3494-3502.

共引文献470

同被引文献29

引证文献5

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部