期刊文献+

卷积神经网络双目视觉路面障碍物检测 被引量:3

Stereo vision based obstacle detection using convolution neural network
下载PDF
导出
摘要 针对双目视觉障碍物检测技术中,双目匹配精度差、障碍物检测算法稳定性与鲁棒性差等问题,对利用卷积神经网络的双目视觉障碍物检测方法进行研究。设计孪生卷积神经网络计算立体图像对的视差图;提出道路直线自适应阈值提取算法,精确提取V视差图中道路直线;利用光栅扫描法逐点判断像素点是否为障碍点,生成障碍检测图。实验结果表明,该方法能够生成精确视差图,有效提取V视差图中道路直线并实现路面障碍物精确提取,提高检测召回率和精确率。 In terms of stereo vision based obstacle detection technology,there are problems such as poor accuracy of stereo matching,poor stabilization and robustness,to solve these problems,an approach of stereo vision based obstacle detection based on convolution neural network was studied.Convolution neural network was applied to generate disparity of stereo image pair.A road line adaptive threshold extraction method was proposed to extract accurate road line in V-disparity map.The raster method was used to determine whether the pixels were obstacles or not,and obstacle detection map was generated.Experimental results show that the proposed method is effective in generation of precise disparity map,extraction of road line in V-disparity map for obstacle detection,improving the recall and precision rate.
作者 胡颖 马国军 何康 王亚军 HU Ying;MA Guo-jun;HE Kang;WANG Ya-jun(School of Electronics and Information,Jiangsu University of Science and Technology,Zhenjiang 212003,China)
出处 《计算机工程与设计》 北大核心 2018年第10期3278-3283,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61371114) 江苏省研究生科研创新计划基金项目(KYCX17_1841)
关键词 双目视觉 卷积神经网络 障碍物检测 V视差 自适应阈值 stereo vision convolution neural network obstacle detection V-disparity adaptive threshold
  • 相关文献

参考文献2

二级参考文献35

  • 1丁幼春,王书茂,陈红.农用车辆作业环境障碍物检测方法[J].农业机械学报,2009,40(S1):23-27. 被引量:10
  • 2王辉,邹伟,郑睿.基于视觉的移动机器人实时障碍检测研究[J].计算机工程与应用,2005,41(25):46-48. 被引量:10
  • 3张磊,王书茂,陈兵旗,刘志刚.基于双目视觉的农田障碍物检测[J].中国农业大学学报,2007,12(4):70-74. 被引量:24
  • 4Heikkila J,Silven O. A four-step camera calibration procedure with implicit image correction[M].IEEE,1997.
  • 5Bradsk G,Kaehler A. Learning OpenCV:Computer vision with the CV library[M].Sebastopol:O'Reilly Media,2008.
  • 6Bochtis D,Soerensen C,Nφrremark M. Agricultural fidd monitoring using a small robot[A].Rosario,2009.
  • 7D Scharstein, R Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [J]. International Journal of Computer Vision, 2002, 47(1): 7-42.
  • 8Q x Yang. A non-local cost aggregation method for stereo matching [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2012. 1402-1409.
  • 9K J Yoon, I S Kweon. Locally adaptive support weight approch for visual correspondence search [J]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, 28(4): 924-931.
  • 10D M Chen, M Ardabilian, X F Wang, et al: An improved non-local cost aggregation method for stereo matching based on color and boundary cue [C]. Proceedings of IEEE International Conference on Multimedia and Expo, 2013. 1-6.

共引文献43

同被引文献24

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部