期刊文献+

运动平台双IMU与视觉组合姿态测量算法 被引量:6

Fused Pose Measurement Algorithm Based on Double IMU and Vision Relative to a Moving Platform
下载PDF
导出
摘要 快速、准确地获取被测物体的姿态信息,对于航空航天、工业生产等领域都具有重要意义。相较于单IMU测量物体相对于惯性坐标系的姿态,在未知平台的运动状态的情况下,采用双IMU实现物体相对于运动平台坐标系的姿态测量。将IMU测量速度快、短期精度高的特点与视觉测量误差不随时间发散的特点相结合,研究运动平台上双IMU与视觉组合姿态测量算法。提出了一种多速率自适应拓展卡尔曼滤波(MAEKF)算法来融合IMU与视觉的测量结果。采用正交双矢量标定法与q-method实现惯性测量中的坐标系标定。实验证明,该组合姿态测量算法能快速、准确地测量被测物体相对于运动平台的姿态。 Obtaining the attitude of a measured object quickly and accurately has great significance in aerospace and industry manufacturing fields.Generally,single IMU can be used to measure the attitude of a measured object relative for an inertial coordinate system.To obtain the attitude relative to a moving coordinate system,double IMU scheme is employed.To measure the attitude of a measured object relative to a moving platform,an algorithm based on double IMU and vision is discussed.IMU has high update frequency and short-term precision,the error of vision dosen’t diverge with the time.The discussed algorithm combines the advantages of IMU and vision.IMU and vision measurement results are fused by a multi-speed adaptive extend Kalman filter(MAEKF).Orthogonal double-vector calibration and q-method are used to calibrate the coordinate system in inertial measurement.Experimental results show that the fusion algorithm can measure objec
作者 孙长库 黄璐 王鹏 郭肖亭 SUN Changku;HUANG Lu;WANG Peng;GUO Xiaotin(State Key Laboratory of Precision Measuring Technology and Instruments,Tianjin University,Tianjin 300072,China)
出处 《传感技术学报》 CAS CSCD 北大核心 2018年第9期1365-1372,1376,共9页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(51875407)
关键词 姿态测量 IMU 卡尔曼滤波 坐标系标定 attitude measurement IMU Kalman filter coordinate calibration
  • 相关文献

参考文献8

二级参考文献49

  • 1张金槐.关于自适应滤波技术的一些思考[J].国防科技大学学报,1994,16(3):68-79. 被引量:21
  • 2张世杰,曹喜滨.基于MicroSim仿真平台的航天器交会对接物理仿真系统[J].航天控制,2006,24(2):63-67. 被引量:5
  • 3马骊群,王立鼎,靳书元,王继虎,曹铁泽.工业大尺寸测量仪器的溯源现状及发展趋势[J].计测技术,2006,26(6):1-5. 被引量:41
  • 4杨叔子 吴雅 等.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1996..
  • 5胡广书 编著.数字信号处理[M].清华大学出版社,1998..
  • 6CHEN Xi-yuan.Modeling random gyro drift by time series neural networks and by traditional method IEEE Int[C]// Conf.Neural networks & Signal Processing,Nanjing,December,2003:810-813
  • 7LI Qiang,Teng Kian-fu,etc.Research of gyro signal de-noise with stationary wavelets transform[J].CCECE2003-CCGEI 2003,1989_1992 Montreal,May 2003
  • 8GUO Ji-chang,Ueng Jian-fu,etc,The de-noise of signals by biorthogonal wavelet transform,CCECE2003-CCGEI 2003,pp1985-1988,Montreal,May 2003
  • 9IEEE Standard Specification Format Guide and Test procedure for Signal-axis laser gyros.IEEE Std 647-1995
  • 10Kristin L.Makovec,Andrew J.Turner,Design and Implementation of a Nano-satellite Attitude Determination and Control System,AAS 01-311

共引文献163

同被引文献33

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部