摘要
为提高超短期和短期风速预测的准确率和可靠性,分析了我国冬季风主要路径上7个代表性地点的风速与气压、风向、气温等的相关性变化。首先,根据相关性/距离指标的性质,采用Pearson相关系数等来计算风速与其影响因子之间的相关性。采用样本交叉相关函数SCCF来分析各地风速之间的平均优化延迟时间。之后,计算了时间窗口上风速与其影响因子第一主成分之间的相关性及其优化延迟时间。结果表明:台湾海峡是特别适合空间相关性超短期预测的风能丰富区域。并且采用北京的气压、风速、风向和气温作为影响因子来预测澳仔的冬季风风速,预测误差对最优延迟时间的依赖性并不明显。北京对澳仔的气压差值,对预测误差的影响最为重要。
In order to improve the accuracy and reliability of ultra-short term and short term wind speed prediction,the correlations among the wind speeds,air pressures,wind directions and air temperatures of seven typical locations on the main path of China winter monsoon are analyzed.First,based on the characteristics of correlation/distance indexes,the Pearson correlation coefficient is sorted out to calculate the correlation between the wind speed and its influence factors.The average optimal lag time between wind speeds are calculated by the Sample Cross Correlation Function(SCCF).Then,the correlation between the wind speed and the first principal component of influence factors and their optimal lag time are calculated on the time window.The results show that the Taiwan Strait is a wind energy resource-rich area that is particularly suitable for the use of spatial correlation for ultra-short-term prediction.If the Aozi wind speeds are predicted by the air pressures,wind speeds,wind directions and air temperatures of Beijing,the prediction errors are insensitive to the optimal lag time.The air pressure difference between Beijing and Aozi has the most important impact on prediction errors.
作者
杨正瓴
吴炳卫
赵强
侯谨毅
陈曦
张军
YANG Zhengling;WU Bingwei;ZHAO Qiang;HOU Jinyi;CHEN Xi;ZHANG Jun(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China;Key Laboratory of Process Measurement and Control,Tianjin University,Tianjin 300072,China)
出处
《电力系统保护与控制》
EI
CSCD
北大核心
2018年第19期51-58,共8页
Power System Protection and Control
基金
国家自然科学基金项目资助(51625702)~~
关键词
风速
预测
空间相关性
冬季风
相关性/距离
延迟时间
wind speed
prediction
spatial correlation
winter monsoon
correlation/distance
lag time