期刊文献+

基于扩展双谱的齿轮压缩采样信号特征提取方法 被引量:1

Feature Extraction Method of Gear Compression Sampling Signals based on Extended Bispectrum
下载PDF
导出
摘要 针对传统信号处理方法不适用于压缩采样信号的问题,提出一种基于扩展双谱的压缩信号特征提取方法,以实现对压缩后的齿轮振动信号直接进行特征提取而避免复杂的信号重构过程。该方法首先将原始信号与M序列进行混频,将高频信息搬移到低频部分,低通滤波后通过低频采样获取压缩采样信号,再对压缩信号进行扩展双谱分析,针对实际应用中存在的问题,进一步引入阶次分析,角域同步平均等技术。仿真及工程实验表明,该方法能有效地提取出压缩采样信号的相位耦合特征,实现故障识别。 Traditional signal processing method is not suitable for compressive sampling signals.In this paper,a feature extraction method of compressive signals based on extended bispectrum is proposed to realize the direct feature extraction of compressive gear vibration signals and avoid the complicated process of signal reconstruction.Firstly,the original signal is mixed with the M sequence,and the high frequency information is shifted to the low frequency part.After low-pass filtering,the compressive sampling signal is acquired by low-frequency sampling.Then,the compressive signal is analyzed by the extended bispectral analysis.Techniques of order analysis and angular domain synchronous averaging are used to solve the problems in practical applications.Simulations and engineering tests show that this method can effectively extract the phase coupling characteristics of compressive sampling signals and realize fault identification.
作者 李飞 秦国军 庄圣贤 LI Fei;QIN Guojun;ZHUANG Shengxian(School of Electrical Engineering,Southwest Jiaotong University,Chengdu 610031,China;Hunan Vtall Information Technology Co.Ltd.,Changsha 423038,China)
出处 《噪声与振动控制》 CSCD 2018年第5期180-185,共6页 Noise and Vibration Control
基金 国家重点研发计划资助项目(2016YFF0203403)
关键词 振动与波 压缩感知 双谱 特征提取 齿轮 vibration and wave compressive sensing bispectrum feature extraction gear
  • 相关文献

参考文献3

二级参考文献69

  • 1陈志新,徐金梧,杨德斌.基于复小波块阈值的降噪方法及其在机械故障诊断中的应用[J].机械工程学报,2007,43(6):200-204. 被引量:27
  • 2方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 3刘晓波,林家国,王依.基于小波包分析的风机叶片裂纹故障识别研究[J].机床与液压,2007,35(9):241-243. 被引量:6
  • 4Marple S L. Digital spectral analysis with applications[M]. Englewood Cliffs: Prentice-Hall, 1987: 35-101.
  • 5Candbs E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans on Information Theory, 2006, 52(2): 489-509.
  • 6Donoho D L. Compressed sensing[J]. IEEE Trans on Information Theory, 2006, 52(4): 1289-1306.
  • 7Donoho D L, Tsaig Y. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 533-548.
  • 8Candbs E. Compressive sampling[C]. Proc of the Int Congress of Mathematicians. Madrid, 2006, 3: 1433-1452.
  • 9Cands E, Romberg J. Quantitative robust uncertainty principles and optimally sparse decompositions[J]. Foundations of Computational Mathematics, 2006, 6(2): 227-254.
  • 10Cands E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.

共引文献53

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部