摘要
针对无损信源编码存在误码扩散的问题,建立了以最大后验概率估计为基础的信源序列分段译码模型,设计了基于统计模型的容错译码算法。该算法充分利用了信源编码数据的残留冗余,较好地消除了无损压缩数据对误码的敏感性,为文本压缩数据的容错译码提供了新思路。实验结果表明,该算法具有纠正信源数据中误码的能力,能够显著减少信息损失。
Aiming at the error code diffusion problems of lossless source coding,a subsection decoding model for source sequence was constructed based on MAP(Maximum A Posteriori),and then a error-resilient decoding algorithm based on statistical model was proposed.The algorithm makes full use of the residual redundancy of source coding data,overcomes the sensitive characteristics of lossless data for error code well,and provides a new solution for error-resilient decoding of text compression data.Experimental results show that this algorithm has the ability of correcting errors in the source data and significantly reduce the information loss.
作者
王刚
彭华
靳彦青
唐永旺
WANG Gang;PENG Hua;JIN Yan-qing;TANG Yong-wang(Information Engineering University,Zhengzhou 450002,China;National Digital Switching System Engineering&Technology Research Center,Zhengzhou 450002,China)
出处
《计算机科学》
CSCD
北大核心
2018年第10期94-98,共5页
Computer Science
基金
国家自然科学基金:基于信道差异的物理层安全编码技术研究(61501516)资助
关键词
无损编码
误码
容错译码
分段译码
符号单元
Lossless coding
Error code
Error-resilient decoding
Subsection decoding
Symbol unit Lossless coding
Error code
Error-resilient decoding
Subsection decoding
Symbol unit