期刊文献+

Sylvester时变矩阵方程求解的终态神经网络算法 被引量:2

Terminal Neural Network Algorithm for Solution of Time-varying Sylvester Matrix Equations
下载PDF
导出
摘要 为了更好地提高收敛的速度和精度,提出一种终态神经网络(TNN)及其加速形式(ATNN)的求解方法。该网络求解方法具有终态吸引特性,能够在有限的时间内得到时变矩阵的有效解。相比于具有渐近收敛动态特性的神经网络,该神经网络方法具有有限时间收敛性,不仅能够改变收敛速度,而且能达到较高的收敛精度。将3种不同的神经网络方法用于求解时变Sylvester动态方程;同时,以终态神经网络求解二次优化问题,实现冗余机械臂Katana6M180有限时间收敛的重复运动规划任务。仿真结果验证了终态神经网络方法的有效性。 In order to improve the convergence rate and convergence precision,a method for new types of terminal neural network(TNN)and its accelerated form(ATNN)was proposed.This method has terminal attractor characteristics and can get effective solution for time-varying matrix in finite time.In contrast to the ANN,it’s proved that TNN can accelerate the convergence,speed and achieve finite-time convergence.It not only improves the rate of convergence,but also results in high computing precision.The dynamic equations of time-varying Sylvester are solved by ANN,TNN and ATNN models respectively.In addition,the terminal neural network models are applied in Katana6M180 manipulator to demonstrate the effectiveness of the proposed computing models in performing the repeatable motion planning tasks.The simulation results verify the validity of the terminal neural network method.
作者 孔颖 孙明轩 KONG Ying;SUN Ming-xuan(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China;School of Information and Electronic Engineering,Zhejiang University of Science and Technology,Hangzhou 310023,China)
出处 《计算机科学》 CSCD 北大核心 2018年第10期207-211,239,共6页 Computer Science
基金 国家自然科学基金(61573320)资助
关键词 终态神经网络 Sylvester时变矩阵方程 有限时间收敛 重复运动规划 Terminal neural networks Tim e-varying Sylvester matrix equations Finit e-time convergence Repeatable motion planning
  • 相关文献

参考文献4

二级参考文献17

  • 1[1]Xia Xiao-hua, Gao Wei-bing. Nonlinear observer design by observer error linearization[J]. SIAM J Control & Optimization,1989,27(2):199-216.
  • 2[2]Zietz M. The extended Luenberger for nonlinear systems[J]. Systems & control Letters,1987,9:156-194.
  • 3[3]Hunt K J, Sbarbaro D, Zbikowski R, et al. Neural networks for control systems - A survey[J]. Automa-tica,1992,28(6):1083-1112.
  • 4[4]Yong H Kim, Frank L Lewis, Chaouki T Abdallah. Dynamic recurrent neural-network-based adaptive observer for a class of nonlinear systems[J]. Automa-tica,1997,33(8):1539-1543.
  • 5[13]Rovithakis G A. Tracking control of multi-input affine nonlinear dynamical systems with unknown nonlinearities using dynamical neural networks[J]. IEEE Trans on systems, Man & Cybern,1999,29(2):179-189.
  • 6[14]Rovithakis G A, Manolis A Christodoulou. Adaptive control of unknown plants using dynamical neural networks[J]. IEEE Trans on Systems,Man & Cybern,1994,24(3):400-411.
  • 7[15]Li Z H, Chai T Y, Wen C Y. Adaptive robust control of nonlinear uncertain systems[J].Int J of Control,1995,26(11):2159-2175.
  • 8李书明,黄燕晓,程关兵.应用BP神经网络方法的民航发动机故障诊断[J].中国民航大学学报,2007,25(A01):40-42. 被引量:4
  • 9Jian-Ping Wang, Xiao-Min Li, Yong Hang. Motor failure diagnosis based on ant colony algorithm and BP neural network [ M ]. Noise. Vibration Worldwide,2011.
  • 10Kosmas Kosmidis, Antonios Stavropoulos. Corporate fail- ure diagnosis in SMEs:A longitudinal analysis based on alternative prediction models [ J ]. International Journal of Accounting and Information Management,2014(6) :221.

共引文献20

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部