期刊文献+

基于边界网格模型的T样条实体重建 被引量:2

Reconstruction of T-Spline Solid from Boundary Mesh
下载PDF
导出
摘要 为解决零亏格边界网格模型的T样条实体重建问题,提出一种基于八叉树细分和渐进迭代最小二乘拟合算法的T样条实体构建算法.首先给出一种基于体-面-边-点4层几何拓扑的T样条实体数据结构和节点矢量计算算法;接着对边界网格进行参数化,在单位参数立方体和网格模型之间建立参数映射关系,并且采用MVC方法保证参数化结果的单射无自交性;最后实现T样条实体的渐进迭代最小二乘拟合.对sphere模型, head模型和bunny模型进行测试,实现了基于边界网格模型的T样条实体重建,提高了T样条实体构建的效率。 A T-spline solid reconstruction algorithm based on octree subdivision and least square progressive iterative approximation(LSPIA)is proposed to solve the problem of reconstruction of T-spline solid from genus-zero boundary mesh.Firstly,this paper presents a cube-face-edge-vertex based four-layer geometry topology T-spline solid data structure and its knot vector calculation algorithm.Then,the parameterization of boundary mesh is realized to build the parametric mapping between the unit cube and the boundary mesh.The MVC parameterization method is also implemented to guarantee the injective mapping and no self-intersection property of the parameterization results.Later,the least square progressive iterative approximation of T-spline solid is implemented.The algorithm presented in this paper has been tested in the case study,which realizes the reconstruction of T-spline solid from boundary mesh.The proposed algorithm improves the efficiency of the reconstruction of T-spline solid and has the advantage in handling large amount of data.
作者 柏硌 赵罡 王伟 杜孝孝 郭马一 Bo Luo;Zhao Gang;Wang Wei;Du Xiaoxiao;Guo Mayi(School of Mechanical Engineering and Automation,Beihang University,Beijing 100191)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第10期1817-1826,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(51305016 61572056)
关键词 T样条实体 八叉树细分 数据结构 渐进迭代最小二乘拟合 等几何分析 T-spline solid octree subdivision data structure least square progressive iterative approximation isogeometric analysis
  • 相关文献

参考文献4

二级参考文献182

  • 1严寒冰,胡事民.球面坐标下的凸组合球面参数化[J].计算机学报,2005,28(6):927-932. 被引量:7
  • 2童伟华,冯玉瑜,陈发来.基于隐式T样条的曲面重构算法[J].计算机辅助设计与图形学学报,2006,18(3):358-365. 被引量:10
  • 3Hoppe H, DeRose T, Duchanmp T, et al. Surface reconstruction from unorganized points [J]. ACM SIGGRAPH Computer Graphics, 1992, 26(2): 71-78.
  • 4Alexa M, Behr J, Cohen-Or D, et al. Point set surfaces [C] // Proceedings of the Conference on Visualization.
  • 5Carr J C, Beatson R K, Cherrie J B, et al. Reconstruction and representation of 3D objects with radial basis functions [C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 2001, 67-76.
  • 6Fu W J. Nonlinear GCV and quasi-GCV for shrinkage models [J]. Journal of Statistical Planning and Inference, 2005, 131 (2), 333-347.
  • 7Wahba G. Spline bases, regularization, and generalized cross validation for solving approximation problems with large quantities of noisy data [M] //Cheney W. Approximation Theory Ⅲ. Austin: Academic Press, 1980:905-912.
  • 8Wahba G. Spline models for observational data [M]//Series in Applied Mathematics. Philadelphia : Crace Wahba Publications, 1990, 59 : 45-66.
  • 9Brent R P. Algorithms for minimization without derivatives[M]. Englewood Cliffs: Prentice-Hall, 1973:95-201.
  • 10Lorensen W, Cline H. Marching cubes: a high resolution 3D surface construction algorithm [J]. Computer Graphics, 2987, 21(4): 153-169.

共引文献37

同被引文献21

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部