期刊文献+

对比双侧视图信息的致密型乳腺X线图像肿块检测 被引量:2

Bilateral Analysis of Mass Detection for Dense Mammograms
下载PDF
导出
摘要 针对现有双视图肿块检测方法存在的问题,提出一种适用于致密型乳腺X线图像的直接对比双侧视图信息的计算机辅助肿块检测方法.为提高双侧图像对称区域的匹配精度,分割图像中的胸肌区域及腋窝区域,建立仅包含乳房区域的生理坐标系;综合乳腺生理特征及肿块病理性质提取感兴趣区域,以梯度图像的局部三元模式特征距离作为尺度测量对称像素的相似度,有效地降低了肿块检测假阳性率.采用北京大学人民医院乳腺中心提供的临床图像进行算法性能实验,结果表明,生理坐标系在定位与匹配对称区域方面具有良好的性能;与现有双视图肿块检测方法相比,在相同的肿块检测正确率下,文中方法获得更低的检测假阳性率. A mass detection method based on bilateral information was proposed for dense mammograms.To improve the matching accuracy of symmetric regions,breast regions were extracted after removal of pectoral muscle and axilla part,and an anatomic coordinate system that only consisted of breast region was constructed.To reduce the false positive rate of mass detection,regions of interest(ROIs)were determined using both physiological and pathological characters besides the inherent information of the images.Feature distance of the local ternary pattern of breast gradient amplitude was employed to measure the similarity between matching pixels.The proposed method is tested on the clinical images provided by the breast center of Peking university people’s hospital.Experimental results show that the constructed coordinate system obtains better ROI matching performance.Compared with existing bilateral mass detection methods,the proposed method yields a lower false positive rate with the same mass detection accuracy.
作者 曹霖 陈后金 李居朋 李艳凤 程琳 Cao Lin;Chen Houjin;Li Jupeng;Li Yanfeng;Cheng Lin(Laboratory of Signal and Image Processing,School of Electronics and Information Engineering,Beijing Jiaotong University,Beijing 100044;Center for Breast,Peking University People’s Hospital,Beijing 100044)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第10期1917-1924,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61571036 61502025 81671034)
关键词 致密型乳腺X线图像 双视图肿块检测 区域匹配 相似度测量 dense mammograms bilateral mass detection regions matching similarity measurement
  • 相关文献

参考文献4

二级参考文献25

  • 1刘惕生.70例乳腺癌高频钼靶X线特征[J].广西医学,2004,26(11):1595-1597. 被引量:1
  • 2王建宇,张峰,周献中,史迎春,骆文.利用小波变换和K均值聚类实现字幕区域分割[J].计算机辅助设计与图形学学报,2006,18(10):1508-1512. 被引量:10
  • 3田岩岩,齐国清.基于小波变换模极大值的边缘检测方法[J].大连海事大学学报,2007,33(1):102-106. 被引量:29
  • 4Pisano E D, Gatsonis C, Hendrick E, et al. Diagnostic per?formance of digital versus film mammography for breast-can?cer screening[J]. The New EnglandJournal of Medicine, 2005, 353(17): 1773-1783.
  • 5Eltonsy N H, Tourassi G D, Elmaghraby A S. A concentric morphology model for the detection of masses in mammogra?phy[J]. IEEE Transactions on Medical Imaging, 2007, 26(6): 880-889.
  • 6Wang Z Q, Yu G, Kang Y, et al. Breast tumor detection in dig?ital mammography based on extreme learning machine[J]. Neurocomputing, 2014,128(3): 175-184.
  • 7Yin F F, Giger M L, Doi K, et al. Computerized detection of masses in digital mammograms: analysis of bilateral subtrac- tion images[J]. Medical Physics, 1991, 18(5): 955-963.
  • 8Sallam M Y, Bowyer K W. Registration and difference analysis of corresponding mammogram images[J]. Medical Image Analysis, 1999,3(2): 103-118.
  • 9Bernholt T, Fried R, Gather U, et al. Modified repeated median filters[J]. Statistics and Computing, 2006,16(2): 177-192.
  • 10Wang Y, Chen Q, Zhang B M. Image enhancement based on equal area dualistic sub-image histogram equalization method[J]. IEEE Transactions on Consumer Electronics, 1999,45(1): 68-75.

共引文献8

同被引文献19

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部