期刊文献+

火电厂保温超低散热技术研究 被引量:2

Research on Ultra-Low Heat Dissipation Technology in Thermal Power Plants
下载PDF
导出
摘要 为减少火电厂管道散热损失,节能降耗,采用保温超低散热技术,计算主蒸汽管道保温结构外表面温度从50℃到30℃,保温厚度、减少的热量损失、投资增加值及投资回收年限,并以山东某电厂(2×1 000 MW)新建工程为例,比较了主蒸汽管道保温结构外表面温度为45℃和50℃时的保温投资,结果表明,将主蒸汽管道保温结构外表面温度从50℃降到45℃时,保温层材料体积将增加,增加投资约30万元,但可减少锅炉出口至汽轮机入口之间主蒸汽和再热蒸汽热段温降1~2℃,降低机组煤耗约0.6 g/(kW·h),为电厂带来可观的经济效益。 In order to reduce the heat dissipation losses and save more energy in thermal power plants,by adopting the ultra-low heat dissipation technology,this paper calculates the insulation thickness,heat dissipation reduction,investment increase and investment recovery years of the main steam pipe with the external surface temperatures of insulation structure ranging from 50℃to 30℃.By taking the newly-built power plant(2×1 000 MW)in Shandong Province for example,the investment in heat preservation is compared with respect to external surface temperatures of main steam pipe of insulation structure at 45℃and 50℃.The results show that when the external surface temperature of the insulation structure declines from 50℃to 45℃,the total volume of the insulation materials will grow,which will cause the increase of the investment by 300 thousand RMB yuan.Nevertheless,the temperature drop at the main steam cycle and the hot reheat steam cycle between the boiler outlet and the steam turbine inlet is reduced by 1 to 2℃and thus the unit coal consumption is lessened by about 0.6 g/(kW·h).Therefore,substantial economic benefits is achieved for the power plants.
作者 蒋丛进 JIANG Congjin(Shenhua Guohua(Beijing)Electric Research Institute Co.,Ltd.,Beijing 100025,China)
出处 《中国电力》 CSCD 北大核心 2018年第10期119-122,129,共5页 Electric Power
基金 国家重点研发计划资助项目(燃煤烟气硫回收及资源化利用技术 2017YFB 0602900)~~
关键词 火电厂 保温 超低散热 保温结构投资 回收年限 节能降耗 thermal power plant insulation ultra-low heat dissipation insulation structure investment recovery year energy saving
  • 相关文献

参考文献4

二级参考文献16

  • 1郭欣,郑楚光,贾小红,林钊,刘亚明.300MW煤粉锅炉烟气中汞形态分析的实验研究[J].中国电机工程学报,2004,24(6):185-188. 被引量:90
  • 2刘立君,赵海谦,刘利刚.高温蒸汽管道保温状况评价[J].管道技术与设备,2004(6):14-15. 被引量:11
  • 3GB50264-97.工业设备及管道绝热工程设计规范[S].[S].,..
  • 4马大猷.现代声学理论基础[M].北京:科学出版社,2006.230.
  • 5PACYNA E G. PACYNA J M, SUNDSETH K. et d. Global emission of mercury to the atmosphere frnmanthropogenic sources in 2005 and prnjections to 2020 [J]. Atmospheric Environment, 2010, 44(20): 2487-2499. T.
  • 6he commission to the council and the European PARI,LAMENT. EU Community Strategy Concerning Mercury [R]. 2005.
  • 7CHEN L, DUAN Y, ZHOU Y. Mercury transformation across particulate control devices in six power plants of chlorine and ashcomposition [J]. Fuel, 2007, 86(4): 603-610.
  • 8蒋丛进,赵毅,潘伟平,等.国内外汞污染控制政策、标准及脱汞技术调研报告[R].2012.
  • 9PACYNA E G, PACYNA J M. Global emission of mercury form anthropogenic sources in 1995 [J]. Water, Air, and Soil Pollution, 2002, 137: 149-165.
  • 10蒋丛进,潘伟平,张永生,等.国华三河电厂脱汞应用技术研究报告[R].2014.

共引文献9

同被引文献6

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部