期刊文献+

基于最长轨迹投影的3D空间手写字符维数约简

Dimensionality Reduction Based on the Longest Trajectory Projections for 3D Space Handwritten Characters
下载PDF
导出
摘要 提出一种基于最长轨迹投影的3D空间手写字符维数约简算法。首先,获取运动指尖的3D坐标,依次连接坐标点生成3D运动轨迹;将3D轨迹上所有的点分别投影到XOY、XOZ、YOZ平面形成2D轨迹;分别计算3个平面内的2D轨迹上相邻点的长度和,选择长度和最大的平面作为最佳投影平面。实验结果表明,所提算法可以得到固定方向的2D图像,不需要方向调整算法,就能够使3D空间手写字符的识别率达到96. 2%。 In order to overcome the above shortcomings,a 3D space handwritten characters dimensionality reduction method based on the longest trajectory projections is proposed in this paper.Firstly,the 3D coordinates of moving fingertip are got and connected to the 3D fingertip coordinates in turn to generate the 3D trajectory.Next,all points on 3D trajectory are projected to XOY,XOZ,YOZ planes and the 2D trajectories are formed.Finally,the length sum of the adjacent points on the 2D trajectory is calculated in the three planes.And the plane that has the maximum 2D projection trajectory length sum is selected as the optimal projection plane.Experimental results have shown that the proposed algorithm can obtain 2D images with fixed direction,and the recognition rate of 3D space handwritten characters can reach to 96.2%without the direction adjustment.
作者 张钰 李瑞梅 章田 ZHANG Yu;LI Ruimei;ZHANG Tian(National Electrical and Electronic Experimental Teaching Demonstration Center,School of Electronic and Information, Hangzhou Dianzi University,Hangzhou 310018,China)
出处 《实验室研究与探索》 CAS 北大核心 2018年第9期5-11,16,共8页 Research and Exploration In Laboratory
基金 国家自然科学基金面上项目(61372156)
关键词 维数约简 最长轨迹投影 空间手写字符 最佳投影平面 dimensionality reduction longest trajectory projection space handwritten characters optimal projection plane
  • 相关文献

参考文献2

二级参考文献37

  • 1刘晓旻,章毓晋.基于Gabor直方图特征和MVBoost的人脸表情识别[J].计算机研究与发展,2007,44(7):1089-1096. 被引量:26
  • 2Mehrabian A.Communication without words[J].Psychological Today,1968(2):53-55.
  • 3Ekman P,Friesen WV.Constants across cultures in the face and emotion[J].Journal of Personality and Social Psychology,1971,17(2):124.
  • 4Ekman P,Friesen W,Hager J.Facial action coding system (FACS)[M].A Technique for the Measurement of Facial Action Consulting,Palo Alto,1978.
  • 5Kenji M.Recognition of facial expression from optical flow[J].IEICE Transactions on Information and Systems,1991,74 (10):3474-3483.
  • 6Cootes T,Taylor C,Cooper D,et al.Active shape models-their training and application[J].Computer Vision and Image Understanding,1995,61 (1):38-59.
  • 7Cootes T,Edwards G,Taylor C.Comparing active shape models with active appearance models[C]//BMVC,Nottingham,1999:173-182.
  • 8Cheon Y,Kim D.Natural facial expression recognition using differential-AAM and manifold learning[J].Pattern Recognition,2009,42(7):1340-1350.
  • 9Lowe D.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60 (2):91-110.
  • 10Berretti S,Bimbo AD,Pala P,et al.A set of selected SIFT features for 3D facial expression recognition[C]//20th International Conference on Pattern Recognition (ICPR),lstanbul,2010:4125-4128.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部