期刊文献+

基于特征提取量化分析的体外活细胞追踪算法研究

Algorithm for tracking living cells in vitro based on quantitative analysis of characteristic extraction
下载PDF
导出
摘要 目的:提高显微镜下序列图像细胞追踪的效率及准确度。方法:提出双阈值形态学与拓扑约束图论法相结合的自动细胞追踪算法,用来分析体外活细胞定向迁移轨迹及参数,并从细胞数目及细胞特征两方面分析追踪算法的准确性。在特征分析方面,从运动速度、运动距离、趋化速度、趋化指数和方向持续性5个指标与手动采样数据进行对比。结果:该算法可以分别识别在毛细管针部灰度较高区域的细胞及其他区域灰度较低的细胞,细胞数目准确度平均达到91.8%,分析得到的5个特征指标与手动采样分析结果基本一致,误差不超过5%。结论:双阈值形态学与拓扑约束图论法相结合的自动细胞追踪算法可以有效提高细胞追踪的准确度。 Objective To improve the efficiency and accuracy of cell tracking algorithm for sequential images under a microscope.Methods An automatic cell tracking algorithm based on two-step threshold and morphology with topology-graph theoretical approach was proposed to analyze the trajectories and motility parameters of living cells in vitro.The accuracy of the cell tracking algorithm was analyzed in the aspects of cell number and cell characteristics.In characteristic analysis,5 characteristic parameters were compared between automatic cell tracking and manual cell tracking,including motility distance,motility speed,chemotaxis speed,chemotaxis index,and persistency.Results The proposed algorithm achieved the identification of cells in high gray-level regions in the capillary tube and those in other lower gray-level regions,and the accuracy in cell number was 91.8%.The 5 characteristic parameters of automatic cell tracking were consistent with the results of manual sampling,with an error not exceeding 5%.Conclusion The automatic cell tracking algorithm based on two-step threshold and morphology with topologygraph theoretical approach can effectively improve the accuracy of cell tracking.
作者 杨利 蔡文杰 马晶 YANG Li;CAI Wenjie;MA Jing(School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《中国医学物理学杂志》 CSCD 2018年第9期1080-1086,共7页 Chinese Journal of Medical Physics
基金 上海市浦江人才计划项目(15PJ1406100)
关键词 细胞追踪 阈值分割 拓扑约束 量化分析 cell tracking threshold segmentation topological constraint quantitative analysis
  • 相关文献

参考文献4

二级参考文献25

  • 1汤春明,于翔.关于显微运动细胞追踪的问题与策略[J].武汉理工大学学报,2004,26(9):81-84. 被引量:1
  • 2Ewert Bengtsson.Segmentation and Tracking of Neural Stem Cell[J].Chinese Journal of Biomedical Engineering(English Edition),2005,14(3):93-103. 被引量:3
  • 3Osher S, Sethian J A. Fronts propagating with curvature dependent speed: algorithms based on Hamihon-Jacobi formulations [J]. Journal of Computational Physics, 1988, 79 (1) : 12-49.
  • 4Kuijper A, Heise B. An automatic cell segmentation method for differential interference contrast microscopy [C]// Proceedings of the 19th International Conference on Pattern Recognition, Newyork, 2008:1-4.
  • 5Yan P K, Zhou X B, Shah M, etal. Automatic segmentation of high-throughput RNAi fluorescent cellular images [J].IEEE Transactions Information Technology in Biomedicine, 2008, 12(1): 109-117.
  • 6Li C M, Xu C Y, Gui C F, etal. Level set evolution without re-initialization: a new variational formulation [C] // Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Newyork, 2005: 430-436.
  • 7Evans L C. Partial differential equations [M]. Providence: American Mathematical Society Press, 1998.
  • 8Sethian J A. Level set methods and fast marching methods [M]. Cambridge: Cambridge University Press, 1996.
  • 9Smereka P. Semi-implicit level set methods for curvature and surface diffusion motion [J]. Journal of Scientific Computing, 2003, 19(1/3) : 439-456.
  • 10Arnold VI. Geometrical methods in the theory of ordinary differential equations[M]. New York: Springer, 1983.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部