期刊文献+

基于上下文信息的自适应场景分类算法 被引量:1

An adaptive scene classification algorithm based on contextual information
下载PDF
导出
摘要 本文针对场景分类中存在的目标物以及之间的相互关系错综复杂,图像的拍摄角度、光照强度不同,造成的场景内容难以辨识等问题,提出了一种利用上下文关联信息进行自适应判别的分类算法。通过检测图像中目标物及其相互之间的上下文关系,利用该信息对图像的细节纹理特征进行增强,最后利用支持向量机(SVM)进行训练和测试,从而实现场景分类。在三个公共标准图像集上的测试实验结果表明,都具有较好的分类效果。 In this paper,aiming at the problems by the complexities of the objects and their relationship in the scene classification,the shooting angles of the images,the different light intensities and the difficulty of recognizing the scene contents.We proposed a classification algorithm that uses contextual information for adaptive discrimination.By detecting the objects in the image and their contextual relationships,the information is used to enhance the detailed texture features of the image.Finally,training and testing are performed using a support vector machine(SVM)to achieve scene classification.The test results from the three public standard image datasets show that the method obtains good classification results.
作者 史静 朱虹 SHI Jing;ZHU Hong(School of Automation and Information Engineering,Xi’an University of Technology,Xi’an 710048,China)
出处 《西安理工大学学报》 CAS 北大核心 2018年第3期344-348,共5页 Journal of Xi'an University of Technology
基金 国家自然科学基金资助项目(61502385) 国家自然科学基金资助项目(61673318) 西安市科技计划资助项目(CXY1509(13)) 西安理工大学教学研究资助项目(xjy1775)
关键词 场景分类 上下文信息 纹理特征 特征融合 scene classification context information texture feature feature fusion
  • 相关文献

参考文献2

二级参考文献37

  • 1华顺刚,王丽丹,欧宗瑛.基于多幅不同曝光量照片的场景高动态范围图像合成[J].大连理工大学学报,2007,47(5):678-682. 被引量:15
  • 2Sivic J, Zisserman A. Video Google: a text retrieval approach to object matching in videos [C]//Proceedings of the 9th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 2003, 2:1470-1477.
  • 3Yang J C, Yu K, Gong Y H, et al. Linear spatial pyramid matching using sparse coding for image classification [C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos.. IEEE Computer Society Press, 2009:1794-1801.
  • 4Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories [C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos- IEEE Computer Society Press, 2006, 2: 2169- 2178.
  • 5Grauman K, Darrell T. The pyramid match kernel: discriminative classification with sets of image features [C] // Proceedings of the 10th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 2005, 2:1458-1465.
  • 6Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4) : 509- 522.
  • 7Yao B P, Khosla A, Li F F. Classifying actions and measuring action similarity by modeling the mutual context of objects and human poses[C] //Proceedings of the 28th International Conference on Machine Learning. Princeton: International Machine Learning Society Press, 2011:1-8.
  • 8Lee Y J, Grauman K. Object-graphs for context-aware category discovery[C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2010:1-8.
  • 9Zhang C J, Liu J, Liang C, et al. Image classification using Harr-like transformation of local features with coding residuals[J]. Signal Processing, 2013, 93(8) : 2111-2118.
  • 10van Gemert J C, Veenman C J, Smedulders A W M, et al. Visual word ambiguity [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7): 1271-1283.

共引文献14

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部