摘要
在有界环形区域上,研究了一类分数阶薛定谔方程孤立解的对称性问题。首先将分数阶薛定谔方程转化为包含Bessel位势和Riesz位势的积分方程组,然后利用移动平面法和Hardy-Littlewood-Sobolev不等式,证明了当方程边值为常数时,环形区域必为同心球,方程正解是径向对称的,且随着到对称点的距离增大而单调递减。
The aim of this paper is to investigate the symmetry problem of a class of fractional Schr dinger equations in bounded annular domains.The fractional Schr dinger equations will be transformed into a system of integral equations involving Bessel potentials and Riesz potentials.Then via the methods of moving planes and Hardy-Littlewood-Sobolev inequality,this paper proves that the annular domains must be balls with the same center,and provided that the boundary values of these equations are constants,positive solutions of this system must be radially symmetric and decreasing with the distance from the center.
作者
谢柳柳
黄小涛
XIE Liuliu;HUANG Xiaotao(College of Science,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,China)
出处
《南京航空航天大学学报》
EI
CAS
CSCD
北大核心
2018年第5期722-726,共5页
Journal of Nanjing University of Aeronautics & Astronautics
基金
国家自然科学基金(11401303)资助项目
研究生创新基地(实验室)开放基金(kfjj20170806)资助项目
关键词
分数阶薛定谔方程
径向对称性
移动平面法
环形区域
fractional Schr dinger equations
radial symmetry
the method of moving planes
annular domains