期刊文献+

一种改进的图像盒子维计算方法 被引量:5

An improved box-counting method for calculating image fractal dimension
下载PDF
导出
摘要 分形维是图像的一种有用的特征,在许多领域中用于图像纹理分析、分割以及分类.盒子维方法由于其实现简单,成为估计图像分形维最常用的一种方法,但是该方法存在计数精度不高、稳定性较差等问题,为此提出了一种新的盒子维估计算法.首先对数字图像的离散灰度曲面进行适当插点补充,使插点后的曲面相对更接近连续的情况,使得在最小尺度下也能实现对不同图像的区分.然后直接采用最小尺度下的盒子数估计分形维,不进行拟合.该算法简单、直观、易于实现.实验结果表明,该方法具有更好的估计精度和稳定性.对于一些特殊测试图像,如尖峰脉冲图像,仍能得到合理的估计值.另外,由于本方法不需要计算多个尺度下的盒子数,因此计算量也相对较小. A fractal dimension is a useful feature parameter for texture analysis,segmentation and classification in many fields.The differential box-counting method is frequently used to estimate image fractal dimension because of its simplicity.However this method is flawed with lack of accuracy and stability.A new box-counting method is presented.First,more nodes are into the discrete intensity surface of a digital image to make it relatively more approximate to a continuous surface.This step makes it possible to distinguish different images at the smallest scale.Then,the fractal dimension of the digital image is estimated directly according to the box number at the smallest scale without the fitting step.Experimental results show that this method is more accurate and stable compared with some typical methods.For some special test images,such as pulse images,the proposed method outperormed unreasonable estimates.In addition,because there is no need to calculate the box numbers at other scales,the computational complexity of our method is lower.
作者 薛松 蒋新生 段纪淼 张培理 XUE Song;JIANG Xinsheng;DUAN Jimiao;ZHANG Peili(Department of Fuel,Army Logistics University,Chongqing 401311,China)
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2018年第6期504-511,共8页 JUSTC
基金 国家自然科学基金(51574254 51704301) 国防科技项目基金(3604031)资助
关键词 分形维 盒子维 灰度图像 fractal dimension box-counting dimension gray-level image
  • 相关文献

参考文献3

二级参考文献29

  • 1姜世国,周一星.北京城市形态的分形集聚特征及其实践意义[J].地理研究,2006,25(2):204-212. 被引量:109
  • 2Collado J M,Hilario C.Model based vehicle detection for intelli- gent vehicles[C]//Proc of IEEE Intelligent Vehicles Symposium. [S.l.] :IEEE Press,2004 : 572-577.
  • 3Wang Junxian, Bebis G, Miller R.Overtaking vehicle detection using dynamic and quasi-static background modeling[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, California, America, 2005: 64-71.
  • 4Ali A, Afghani S.Shadow based on-road vehicle detection and verification using HAAR wavelet transfonn[C]//1st International Conference on Information and Communication Technologies, 2005 : 346-346.
  • 5Hoflman C, Dang T, Stiller C.Vehicle detection fusing 2D visual features[C]//IEEE Proceedings of Intelligent Vehicles Symposium, Parma, Italy, 2004: 280-285.
  • 6Sun Z,Bebis B,Miller R.On-road vehicle detection:A review[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2006, 28(5 ) :694-711.
  • 7Tzomakas C, Seelen W.Vehicle detection in traffic scenes using shadows, Internal Ruhr 98-06[R].Bochum, Germany: lnstitut fur Neuro Informatik,Ruhr-Universit Bochum, 1998.
  • 8Sarkar N, Chaudhuri B.An efficient approach to estimate fractal dimension of textural image[J].Pattem Recognition, 1992,25 (9) : 1035-1041.
  • 9Khammari A,Nashashibi F,Abramson Y.Vehicle detection com- bining gradient analysis and AdaBoost classification[C]//Proceed- ings of the 8th International IEEE Conference on Intelligent Transportation Systems Vierma,Austria,2005: 1084-1089.
  • 10Wu Bingfei, Chen Chaojung.Embedded weather adaptive lane and vehicle detection system[C]//IEEE International Symposium on Industrial Electronics, ISIE 2008,2008 : 1255-1260.

共引文献25

同被引文献53

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部