期刊文献+

基于余量谐波平衡法的质点振动系统高阶近似与频率响应分析 被引量:1

Higher-order approximation and frequency response analysis of a particle vibration system based on a residue harmonic balance method
下载PDF
导出
摘要 基于谐波平衡方法,构建了用于研究旋转抛物线上的质点运动系统的余量谐波平衡解程序。获得了系统高阶解析近似振动频率及稳态响应。研究了系统稳态下的振动频率随系统非线性项系数、初始振幅、线性刚度系数的变化趋势,给出了初始振幅、非线性项系数对系统振动频率响应的影响。研究结果表明,给出的2-阶余量谐波平衡近似比已有的方法结果更加精确,其相对误差大大降低,系统稳态下的振动频率随非线性项系数、初始振幅的增大而减少,随线性刚度系数的增大而增大。 Based on the harmonic balance method,a solution procedure of residue harmonic was developed for studying the system in which the motion of a particle is a rotating parabola.Firstly,the higher-order analytical vibration frequency and steady state response were obtained.Secondly,we study the change trend of vibration frequency as nonlinear coefficient,initial amplitude,linear stiffness coefficient of the system in steady state,the effects of initial amplitude,nonlinear coefficient on vibration frequency response were presented.The results show that the presented second-order residue harmonic balance approximations to vibration frequency and steady response are more accurate than some existing results,and that the relative error of the solution is greatly reduced,which are in good agreement with the exact ones.The vibration frequency is decreased with the increase of the nonlinear coefficient and the initial amplitude,but it increased with the increase of the linear stiffness coefficient.
作者 国忠金 张伟 夏丽莉 GUO Zhongjin;ZHANG Wei;XIA Lili(School of Mathematics and Statistics,Taishan University,Taian 271000,China;College of Mechanical Engineering,Beijing University of Technology,Beijing 100124,China;Beijing Key Laboratory on Nonlinear Vibrations and Strength of Mechanical Structures,Beijing 100124,China)
出处 《振动与冲击》 EI CSCD 北大核心 2018年第20期154-158,共5页 Journal of Vibration and Shock
基金 国家自然科学基金(11290152 11427801 11502160) 山东省自然科学基金(ZR2014JL002 ZR2014AQ028) 山东省高等学校科研计划项目(J15LI13) 北京博士后基金(2015ZZ-18)
关键词 质点振动系统 余量谐波平衡 高阶近似 频率响应 particle vibration system residue harmonic balance higher-order approximation frequency response
  • 相关文献

参考文献5

二级参考文献47

  • 1HongGuang Sun,Wen Chen.Fractal derivative multi-scale model of fluid particle transverse accelerations in fully developed turbulence[J].Science China(Technological Sciences),2009,52(3):680-683. 被引量:5
  • 2CHUNG Kwok Wai.A perturbation-incremental scheme for studying Hopf bifurcation in delayed differential systems[J].Science China(Technological Sciences),2009,52(3):698-708. 被引量:15
  • 3Mickens R E. Harmonic balance and iteration calculations of periodic solutions to y + y^-1 = 0 [ J ]. Journal of Sound and Vibration 2007, 306 : 968 - 972.
  • 4Belendez A, Mendez D I, Belendez T, et al. Harmonic balance approaches to the nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable [ J]. Journal of Sound and Vibration,2008, 314:775 -782.
  • 5Mickens R E. Oscillations in Planar Dynamic Systems[ M ]. Singapore : World Scientific, 1996.
  • 6Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products[M]. New York: Academic Press, 1980.
  • 7Hu H, Tang J H. Solution of a Duffing - harmonic oscillator by the method of harmonic balance[ J]. Journal of Sound and Vibration 2006, 294 : 637 - 639.
  • 8Belendez A, Hem ndez A, Belendez T, et al. Neipp C Application of the harmonic balance method to a nonlinear oscillator typified by a mass attached to a stretched wire [ J ]. Journal of Sound and Vibration 2007, 302:1018 -1029.
  • 9Mickens R E.Oscillations in Planar Dynamic Systems[M].Singapore:World Scientific,1996.
  • 10Wu B S,Sun W P,Lim C W.An analytical approximate technique for a class of strongly non-linear oscillators[J].Int.J.Non-Linear Mech.2006,41:766-774.

共引文献11

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部