期刊文献+

锂离子电池陶瓷隔膜的热降解行为

Thermal degradation behavior of ceramic membrane for lithium ion batteries
下载PDF
导出
摘要 研究了锂离子电池陶瓷隔膜的热稳定性及热降解动力学,采用热重分析法,在氮气气氛中,升温速率分别为5、10、20和30℃/min的条件下,利用Kissinger、Flynn-Wall-Ozawa、Friedman和Modified Coats-Redfern方法对隔膜的非等温热分解动力学数据进行了分析。TG曲线显示隔膜分解率达到10%和15%时,最低热降解温度分别为424.5和431.5℃;隔膜的热降解为一步法,分解的温度区间为350~520℃,热分解的表观活化能为205.25 kJ/mol。分解率达到1.0%、2.0%和5.0%时,隔膜的最低分解温度分别为354.7、377.9和409.2℃;最大转化率为68.39%,对应最低分解温度为474.4℃,而残余碳化物及氧化铝为31.61%。 The thermal stability and thermal degradation kinetics of the ceramic separator for lithium ion batteries were studied.Under the conditions of 5,10,20 and 30℃/min in the nitrogen atmosphere,the non-isothermal pyrolysis kinetic data of separators were analyzed by the Kissinger,Flynn-Wall-Ozawa,Friedman and Modified Coats-Redfern methods.TG curves show that the decomposition rate of ceramic diaphragm reaches 10%and 15%,the lowest thermal degradation temperature is 424.5 and 431.5℃,respectively.Ceramic diaphragm undergo the one-step decomposition,its decomposition temperature is in the range of 350~520℃,the apparent activation energy E of thermal decomposition is 205.25 kJ/mol.When the decomposition rate reaches 1.0%,2.0%and 5.0%,the lowest temperature of the ceramic membrane iss 354.7,377.9 and 409.2℃,respectively.The maximum conversion rate is 68.39%,corresponding to the lowest decomposition temperature is 474.4℃,while the residual carbide and alumina is 31.61%.
作者 荣彬森 鲁伊恒 吴婧 李康 胡佳信 RONG Bin-sen;LU Yi-heng;WU Jing;LI Kang;HU Jia-xin(School of Chemical Engineering,Anhui University of Science and Technology,Huainan Anhui 232001,China)
出处 《电源技术》 CAS CSCD 北大核心 2018年第10期1458-1461,共4页 Chinese Journal of Power Sources
基金 国家级大学生创新创业计划项目(编号201510361062)
关键词 陶瓷隔膜 热稳定性 热降解动力学 锂离子电池 ceramic separator thermal stability thermal degradation kinetics lithium ion battery
  • 相关文献

参考文献3

二级参考文献48

  • 1林成涛,陈全世,王军平,黄文华,王燕超.用改进的安时计量法估计电动汽车动力电池SOC[J].清华大学学报(自然科学版),2006,46(2):247-251. 被引量:97
  • 2孙卫明,杜慧芳,侯惠奇.热致相分离聚丙烯微孔膜[J].功能高分子学报,1996,9(3):453-460. 被引量:8
  • 3UCHIDA I, ISHIKAWA H, MOHAMEDI M,et al. AC-impedance measurements during thermal runaway process in several lithium/ polymer batteries [J]. J Power Sources, 2003,119-121:821-825.
  • 4ARORA P, ZHANG Z M. Battery separators [J].Chem Rev, 2004, 104:4419-4462.
  • 5TAKITA K,FUNAOKA H,KAIMAI N,et al.Polyolefin microporous film and method for preparing the same:US,6245272 [P].2001- 06-12.
  • 6IHM D, NOH J, KIM J. Effect of polymer blending and drawing conditions on properties of polyethylene separator prepared for Li-ion secondary battery [J]. J Power Sources,2002,109: 388-393.
  • 7OOMS F G B,KELDER E M,SCHOONMAN J,et al. Performance of solupor separator materials in lithium ion batteries [J]. J Power Sources,2001,97-98:598-601.
  • 8DRUIN M L, ORANGE W, LOFT J T, et al. Novel open-celled microporous film : US, 38014042 [P]. 1974-04-02.
  • 9XU M, HU S,GUAN J Y, et al. Folypropylene microporous film: US, 5134174[P].1992-07-28.
  • 10TABATABAEI S H,CARREAU P J,AJJI A. Microporous mem- branes obtained from polypropylene blend films by stretching [J].J Membr Sci, 2008,325 : 772-782.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部