期刊文献+

各向同性同质区域选取的高光谱遥感图像噪声估计方法 被引量:2

Noise Estimation Based on Isotropic Homogeneous Region Detection in Hypersepctral Images
下载PDF
导出
摘要 在现有高光谱遥感图像噪声估计方法中,同质区域的选取通常是最关键的步骤,有效的同质区域选取方法能够提高图像的噪声估计精度。本文充分利用了高光谱遥感图像中丰富的空间信息和光谱信息,提出了一种各向同性同质区域选取算法,其中,为了更好地区分同质区域内像元相似度,构造了一种新的兰氏-光谱角度量;结合基于多元线性回归的去相关法,通过最优区域评估高光谱遥感图像噪声水平。利用不同结构及信噪比的模拟图像和真实高光谱遥感图像进行实验,通过与现有的多种噪声估计方法比较,验证了本文方法在针对不同噪声水平、不同复杂程度的图像时更加准确和稳定。 It often plays a key role to extract homogeneous regions in the existing noise estimating methods for hyperspectral images(HSI).An effective homogeneous region detection method can improve the accuracy of image noise estimation.An isotropic homogeneous region detection algorithm(IHRDA)is proposed by using spatial information and spectral information,where a new Lance-SAD metric(LSM)is constructed to distinguish the similarity of picture elements in the homogeneous regions;then the noise level of hyperspectral images is estimated using the optimal regions with decorrelation based on multivariable linear regression(MLR)model.In experiments,synthetic images with different structure under different signal to noise ratio(SNR)and true hyperspectral remote sensing images are both compared with many existing methods,which show that the proposed method is more accurate and stable for hyperspectral images with various complexities and different noise levels.
作者 孙鑫 傅鹏 孙权森 Sun Xin;Fu Peng;Sun Quansen(School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China)
出处 《数据采集与处理》 CSCD 北大核心 2018年第5期809-817,共9页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61673220)资助项目
关键词 高光谱图像 噪声估计 多元线性回归 光谱相似性度量 同质区域选取 hyperspectral image noise estimation multivariable linear regression spectral similarity metrics homogeneous region detection
  • 相关文献

参考文献2

二级参考文献22

  • 1王建勇,周晓光,廖启征.一种基于中值-模糊技术的混合噪声滤波器[J].电子与信息学报,2006,28(5):901-904. 被引量:22
  • 2王红梅,李言俊,张科.基于极值检测的图像滤波算法[J].激光与红外,2007,37(10):1117-1119. 被引量:26
  • 3张兵.高连如.高光谱图像分类与目标探测[M].北京:科学出版社,2011.
  • 4Curran P J, Dungan J L. Estimation of signal-to-noise:a new procedure applied to AV/RIS data [J]. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27 (5): 620-628.
  • 5Gao B C. An operational method for estimating signal to noise ratios from data acquired with imaging spectrometers [J]. Remote Sensing of Environment, 1993, 43(1): 23-33.
  • 6Roger R E, Arnold J F. Reliably estimating the noise in AVIRIS hyperspectral images [J]. International Journal of Remote Sensing, 1996, 17(10): 1951-1962.
  • 7Shutin D, Buchgraber T, Kulkarni S R, et al. Fast variational sparse bayesian learning with automatic relevance determination for superimposed signals[J]. IEEE Transctions on Signal Processing, 2011, 59(12): 6257-6261.
  • 8Tipping M. Sparse Bayesian learning and the relevance vector machine [J]. Journal of Machine Learning Research, 2001 (1): 211-244.
  • 9Brownrigg D R K. The weighted median filter[J]. Communications of the ACM,1984 ,27(8) : 807-818.
  • 10Chen Tao, Ma Kaikuang, Chen Lihui. Tri-state median filterforimage denoising[J]. IEEE Transactions on Image Process ing,1999,8(12):1834-1838.

共引文献9

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部