期刊文献+

基于改进凸包和颜色对比度的彩色图像分割方法 被引量:5

Color image segmentation algorithm based on improved convex hull and color contrast
下载PDF
导出
摘要 基于特征对比度的显著性检测方法在处理复杂背景图像时,容易将对比度较高的背景区域误判为目标,导致分割结果不准确.为解决上述问题,提出了一种基于改进凸包和全局颜色对比度的彩色图像分割方法.首先以超像素为基本计算单元,根据图像颜色及其空间分布,计算基于颜色对比度的基本显著图;然后利用颜色增强Harris角点得到目标的凸包,并利用FH方法生成的超像素对凸包进行修正,以此为基础计算基于改进凸包的中心显著图;最后将上述2个显著图进行加权融合得到最终显著图,并使用大津法得到图像中的目标.通过在MSRA1000和ECSSD数据集上进行实验,结果表明本文算法相较于其他算法在可视效果和准确率、召回率等评价指标方面有明显的优势. The detection method based on feature contrast is easy to misjudge the background area with high contrast as the target when processing complex background images.This may lead to inaccurate segmentation results.In order to solve this problem,this paper presents a new method for color image segmentation based on improved convex hull and color contrast.Firstly,the method takes superpixel as the basic processing unit,and measures the saliency map based on color contrast with uniqueness and spatial distribution.Secondly,it calculates convex hull using color enhancement Harris corner points.The convex hull is corrected through FH algorithm.The center saliency map can be achieved through the corrected convex hull.The final saliency map is obtained by the fusion of the contrast map and the center saliency map.Finally,the object was segmented out using OTSU method.Simulation experiments on the MSRA 1 000 and ECSSD databases were conducted.The results indicate that the proposed algorithm performs better in visualization,precision.
作者 陈丽萍 周航 张宁雨 杨文柱 崔振超 刘晴 CHEN Liping;ZHOU Hang;ZHANG Ningyu;YANG Wenzhu;CUI Zhenchao;LIU Qing(School of Cyber Security and Computer,Hebei University,Baoding 071002,China;Tangshan Land and Resources Bureau,Tangshan 063000,China)
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2018年第5期543-548,共6页 Journal of Hebei University(Natural Science Edition)
基金 河北省自然科学基金资助项目(F2015201033 F2017201069)
关键词 彩色图像分割 颜色对比度 超像素 凸包 显著图 color image segmentation color contrast superpixel convex hull saliency map
  • 相关文献

参考文献4

二级参考文献57

  • 1任柯昱,唐丹,尹显东.基于字符结构知识的车牌汉字快速识别技术[J].计算机测量与控制,2005,13(6):592-594. 被引量:16
  • 2杨晓敏,吴炜,黎涛,何小海.基于Gabor变换和支持向量机的车牌字符识别算法[J].四川大学学报(工程科学版),2005,37(5):130-134. 被引量:17
  • 3REN Xiao-fimg, MAI,IK J. Learning a classification model for seg- mentation[ C ]//Proc of the 9th IEEE International Conference on Computer Vision. Washington DC :IEEE Computer Society ,2(X)3 : 10-17.
  • 4FEIZENSWALB P F, HUTFENLOCHER D P. Efficient graph-based image segmentation [ J ]. International Journal of Computer Vision, 2004, 59(2):167-181.
  • 5SHI Jian-bo, MALIK J. Normalized cuts and image segmentation [C]//Proc of IEEE Computer Society Conference on Computer Vi-sion and Pattern Recognition. Washingtan DC:IEEE Camputer Socie- ty, 1997:731-737.
  • 6SHI Jian-bo, MAL1K J. Normalized cuts and image segmentation[ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8) :888-905.
  • 7MOORE A, PRINCE S, WARRELI. J, et al. Superpixel lattices [ C]//Proc of IEEE Conference on Computer Vision and Pattern Rec- ognition. 2008 : 1-8.
  • 8LIU Ming-yu, TUZEL O, RAMALINGAM S,et al. Entropy rate su- perpixel segmentation [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2011:2097-2104.
  • 9VINCENT L, SOILLE P. Watersheds in digital spaces: an efficient algoritlml based on inlmeision simulations[ J]. IEEE Trans on Pat- tern Analysis and Machine Intelligence, 1991, 13 (6) : 583-598.
  • 10COMANICIU D, MEER P. Mean shift: a rnhust approrah toward fea- ture space analysis[ J ]. IEEE Trans on Pattern Analysis and Ma- chine Intelligence, 2002, 24(5): 603-619.

共引文献246

同被引文献34

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部