期刊文献+

具有随机扰动的SIV传染病模型的动力学行为分析 被引量:1

Dynamic behavior analysis of stochastic SIV epidemic model
下载PDF
导出
摘要 研究具有随机扰动的SIV传染病模型的动力学行为.通过构造恰当的李雅普诺夫函数并运用伊藤公式,证明了系统全局正解依概率1的存在性,给出了系统随机最终有界和随机持久的充分条件.利用Higham等提出的Milstein方法对所给的系统进行了数值模拟. Dynamic behavior of SIV epidemic model with stochastic perturbations was investigated.By constructing suitable Lyapunov functions and applying It formula,the existence of global positive solutions with probability to the system was proved and the sufficient condition of stochastic ultimate boundedness and stochastic permanence of the system was given.Employing Milstein method presented by Higham et alii,the numerical simulation of the given system was performed.
作者 黄灿云 郝一新 孟新友 HUANG Can-yun;HAO Yi-xin;MENG Xin-you(School of Science,Lanzhou Univ.of Tech.,Lanzhou 730050,China)
出处 《兰州理工大学学报》 CAS 北大核心 2018年第5期150-154,共5页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(11661050)
关键词 SIV传染病模型 随机扰动 全局正解 随机持久 SIV epidemic model stochastic perturbations global positive solution stochastic permanence
  • 相关文献

参考文献2

二级参考文献21

  • 1李建全,马知恩.一类带有接种的流行病模型的全局稳定性[J].数学物理学报(A辑),2006,26(1):21-30. 被引量:19
  • 2KOELLE K, PASCUAL M, YUNUS M. Pathogen adaptation to seasonal forcing and climate change [J].Proe R Soe Lond B, 2005,272 : 971-977.
  • 3KOELLE K, PASCUAL M, YUNUS M. Serotype cycles in cholera dynamics [J]. Proc R Soe Lond B, 2006, 273: 2879- 2886.
  • 4ANDERSEN M D, NEUMANN N F. Giardia intestinalis: new insights on an old pathogen[J]. Rev Med Microbiol, 2007,18 (2) :35-42.
  • 5JOSEPH H T, DAVID J D E. Multiple transmission pathways and disease dynamics in a waterbome pathogen model [J].Bulletin of Mathematical Biology, 2010,72(6) : 1506-1553.
  • 6VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compart- mental models of disease transmission [J]. Math Biosci, 2002, 180 : 29-48.
  • 7LASALLE J, LEFSCHETZ S. Stability by Liapunov's direct method[M]. New York: Academic Press, 1961.
  • 8MUSHAYABASA S,BHUNU C P.Modeling the impact of early therapy for latent tuberculosis patients and its optimal control analysis[J].J Biol Phys,2013,39:723-747.
  • 9BOWONG S.Optimal control of the transmission dynamics of tuberculosis[J].Nonlinear Dyn,2010,61:729-748.
  • 10YANG X,CHEN L.Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models[J].Computers & Mathematics with Applications,1996,32(4):109-116.

共引文献16

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部