摘要
研究具有随机扰动的SIV传染病模型的动力学行为.通过构造恰当的李雅普诺夫函数并运用伊藤公式,证明了系统全局正解依概率1的存在性,给出了系统随机最终有界和随机持久的充分条件.利用Higham等提出的Milstein方法对所给的系统进行了数值模拟.
Dynamic behavior of SIV epidemic model with stochastic perturbations was investigated.By constructing suitable Lyapunov functions and applying It formula,the existence of global positive solutions with probability to the system was proved and the sufficient condition of stochastic ultimate boundedness and stochastic permanence of the system was given.Employing Milstein method presented by Higham et alii,the numerical simulation of the given system was performed.
作者
黄灿云
郝一新
孟新友
HUANG Can-yun;HAO Yi-xin;MENG Xin-you(School of Science,Lanzhou Univ.of Tech.,Lanzhou 730050,China)
出处
《兰州理工大学学报》
CAS
北大核心
2018年第5期150-154,共5页
Journal of Lanzhou University of Technology
基金
国家自然科学基金(11661050)
关键词
SIV传染病模型
随机扰动
全局正解
随机持久
SIV epidemic model
stochastic perturbations
global positive solution
stochastic permanence