期刊文献+

一种基于鲶鱼效应和新型搜索机制的混沌蝙蝠算法 被引量:2

Chaotic bat algorithm based on chaos catfish effect and new search mechanism
下载PDF
导出
摘要 针对蝙蝠算法(BA)收敛速度慢、易早熟、寻优精度差的缺点,该文提出一种基于鲶鱼效应和新型搜索机制的改进的混沌蝙蝠算法。首先采用均匀性更好的Tent混沌序列产生初始种群,以增强初始种群多样性。设计了新型频度和速度更新函数,以更好地调节种群的聚集速度,提高全局搜索能力,缓解局部最优现象。将混沌扰动思想引入蝙蝠算法,提出一种新的局部搜索机制和变步长搜索策略,以提高局部搜索的效率和精度。设计了基于混沌鲶鱼效应的种群激活机制,增强了蝙蝠群体跳出局部最优和加速收敛的能力。典型函数的对比测试结果证明了该算法的有效性。 In view of that the bat algorithm(BA)has disadvantages of slow convergence,prematurity and poor precision,an improved bat algorithm based on the chaos catfish effect and the new search mechanism is proposed here.Firstly,the tent chaotic sequence is used to generate initial population to enhance its diversity.The new pulse emission rate and the velocity update function are designed to adjust the aggregation speed of the population better and alleviate the local optimum phenomenon.Secondly,the new local search mechanism and the variable step size search strategy are introduced to improve the efficiency and accuracy of local search.Thirdly,the activation mechanism of the bat population based on the chaotic catfish effect is designed to enhance the ability of the algorithm to jump out of the local optimum and accelerate convergence.The test results of typical functions demonstrate the effectiveness of the proposed algorithm.
作者 王玉昆 叶伟 陈雪波 Wang Yukun;Ye Wei;Chen Xuebo(School of Electronic and Information Engineering,University of Science and Technology Liaoning,Anshan 114051,China;Faculty of Science and Electronic Information,Guangdong University of Petrochemical Technology,Maoming 525000,China)
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2018年第5期629-636,共8页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(61473054 71571091 71371092)
关键词 蝙蝠算法 混沌序列 搜索机制 鲶鱼效应 bat algorithms chaotic sequence search mechanism catfish effect
  • 相关文献

参考文献6

二级参考文献64

  • 1王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:86
  • 2孟伟,韩学东,洪炳镕.蜜蜂进化型遗传算法[J].电子学报,2006,34(7):1294-1300. 被引量:78
  • 3Potts J C,Yerri D G,Surya B Y.The development and evolution of an improved genetic algorithm based on migration and artifical selection[J].IEEE Tranctions on SMC,1994,24(1):73~86.
  • 4Rayward Smith V J,Clare A.On finding Steiner vertices[J].Networking,1986,16(3):283~294.
  • 5Bernard M,W.Routing of multipoint connections[J].IEEE Journal on Selected Areas in Communications,1988,6(9):1 617~1 621.
  • 6Lyons P C, Thomas S A. Microprocessor based control of distribution systems. IEEE Transactions on Power Apparatus and Systems, 1981, PAS- 100(12): 4893:4900.
  • 7Gomes F V, Carneiro S Jr, Pereira J L R, Vinagre M P, Garcia P A N, Araujo L R. A new heuristic reconfiguration algorithm for large distribution system. IEEE Transactions on Power Systems, 2005, 20 (3): 1373-1378.
  • 8Shirmohammadi D, Hong W H. Reconfiguration of electric distribution networks for resistive line losses reduction. IEEE Transactions on Power Delivery, 1989, 4(2): 1492-1498.
  • 9Zhu J Z. Optimal reconfiguration of electric distribution network using refined genetic algorithm. Electric Power Systems Research, 2002, 62(1): 37:42.
  • 10Civanlar S, Grainger J J, Yin H, Lee S S H. Distribution feeder reconfiguration for loss reduction. IEEE Transactions on Power Delivery, 1988, 3(3): 1217 1223.

共引文献225

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部