期刊文献+

基于Faster R-CNN的人体行为检测研究 被引量:19

Research on human behavior detection based on Faster R-CNN
下载PDF
导出
摘要 由于人体行为类内差异大,类间相似性大,而且还存在视觉角度与遮挡等问题,使用人工提取特征的方法特征提取难度大并且难以提取有效特征,使得人体行为检测率较低。针对这个问题,本文在物体检测的基础上使用检测效果较好的Faster R-CNN算法来进行人体行为检测,并对Faster R-CNN算法与批量规范化算法和在线难例挖掘算法进行结合,有效利用了深度学习算法实现人体行为检测。对此改进算法进行实验验证,验证的分类和位置精度达到了80%以上,实验结果表明,改进的算法具有识别精度高的特点。 Because of large intra-class difference and large inter-class similarity of human behaviors,as well as problems such as visual angle and occlusion,it is difficult to extract features,especially effective features,using the manual feature extraction method.This results in low accuracy of human behavior detection.To solve this problem,this paper applies a faster region-based convolutional neural network(Faster R-CNN)algorithm,which has a better detection effect,to detect human behavior on the basis of object detection.By combining the Faster-RCNN algorithm with batch normalization algorithm and an online hard example mining algorithm,the deep learning algorithm is effectively utilized to detect human behavior.Experimental results show that the accuracy of classification and position of the improved algorithm exceeds 80%,thereby verifying its high recognition accuracy.
作者 莫宏伟 汪海波 MO Hongwei;WANG Haibo(College of Automation,Harbin Engineering University,Harbin 150001,China)
出处 《智能系统学报》 CSCD 北大核心 2018年第6期967-973,共7页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(60035117)
关键词 人体行为检测 更快速区域卷积神经网络 在线难例挖掘 深度学习 目标检测 卷积神经网络 批规范化 迁移学习 human behavior detection faster R-CNN OHEM deep learning object detection convolutional neural network batch normalization transfer learning
  • 相关文献

参考文献5

二级参考文献88

  • 1HAYKINS.神经网络与机器学习[M].3版.申富饶,徐烨,郑俊,译.北京:机械工业出版社,2011:237.
  • 2Gavrila D M. Vision-Based 3-D Tracking of Human in Action. Ph. D Dissertation. Maryland, USA: University of Maryland, 1996.
  • 3Sminchisescu C, Kanaujia A, Li Zhiguo, et al. Conditional Models for Contextual Human Motion Recognition / / Proc of the 10th Inter?national Conference on Computer Vision. Beijing, China, 2005, II: 1808-1815.
  • 4Belongie S, MalikJ, PuzichaJ. Shape Matching and Object Recog?nition Using Shape Context. IEEE Trans on Pattern Analysis and Machin", Intelligence, 2002, 24(4): 509-522.
  • 5Kumar S, Hebert M. Discriminative Random Fields: A Discrimina?tive Framework for Contextual Interaction in Classification / / Proc of the 9th IEEE Conference on Computer Vision. Nice, France, 2003, II: 1150-1157.
  • 6McCallum A, Freitag D, Pereira F. Maximum Entropy Markov Mo?dels for Information Extraction and Segmentation / / Proc of the 17 th International Conference on Machine Learning. Stanford, USA, 2000: 591-598.
  • 7Laptev I, Lindeberg T. Space-Time Interest Points / / Proc of the 9th IEEE Conference on Computer Vision. Nice, France, 2003, I: 432-439.
  • 8Bobick A F, DavisJ W. The Recognition of Human Movement Using Temporal Templates. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23 (3) : 257-267.
  • 9Kellokumpu V, Pietikainen M, HeikkilaJ. Human Activity Recogni?tion Using Sequences of Postures / / Proc of the International Associ?ation for Pattern Recognition Conference on Machine Vision Applica?tions. Tsukuba Science City,Japan, 2005: 570-573.
  • 10Wang Liang, Suter D. Learning and Matching of Dynamic Shape Manifolds for Human Action Recognition. IEEE Trans on Image Pro?cessing, 2007, 16(6): 1646-1661.

共引文献226

同被引文献146

引证文献19

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部