期刊文献+

基于特征方程的某些图双概率可靠性的统一形式 被引量:1

Uniform Form of Some Graphs' Two Probability Reliability Based on Characteristic Equation
下载PDF
导出
摘要 设灾难发生时,图G=(V,E)的各顶点以独立概率p_1幸存,失效的顶点灾后以概率p2独立恢复功能(p_1>p_2).定义了双概率可靠性,利用减缩边递推公式得到路图、正则q-树和圈图的迭代式满足二阶特征方程,并利用它们各自的初值,计算得到它们的统一形式的通项表达式. Suppose G=(V,E)is a graph where each vertex may independently succeed with probability p 1 when catastrophic thing happens,and each failure vertex may recovery function with independent probability p 2 where(p 1>p 2).So we definite expect of graph,and it is a polynomial of p 1 and p 2.And expect is a proper index of reliability.By means of deletion contraction edge formula,we have found that path graph,regular q-tree graph and cycle graph satisfy the second order characteristic equation.So we can calculate the coefficients with its initial value,and then the uniform form of general term is obtained.
作者 刘莹 唐晓清 王双成 LIU Ying;TANG Xiao-qing;WANG Shuang-cheng(Department of Science&Information Science,Shaoyang University,Shaoyang Hunan 422000,China;College of Statistics&Mathematics,Shanghai Lixin University of Accounting and Finance,Shanghai 201620,China;School of Information Management,Shanghai Lixin University of Accounting and Finance,Shanghai 201620,China)
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2018年第10期18-21,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家社会科学基金项目(18BTJ020) 湖南省教育厅一般项目(16C1434) 邵阳市科技计划项目(2017GX09) 立信学院校级2017教学研究项目(AW-12-2203-005066) 2017立信学院"经济统计学应用型本科试点"项目(A0-11-2806-09-0112) 2018立信产学研示范基地建设项目(A0-21-0251-00409)
关键词 双概率可靠性 特征方程 正则q树 减缩边公式 two probability reliability characteristic equation regular q-tree deletion contraction edge formula
  • 相关文献

参考文献9

二级参考文献55

  • 1沈小玲,侯耀平.最大度和次大度相等的双星树由它的Laplacian谱确定[J].湖南师范大学自然科学学报,2007,30(3):22-25. 被引量:2
  • 2MARKOWITZ H M.Portfolio selection[J].Finance,1952,1(7):77-91.
  • 3FRANKFURTHER G M,PHILLIPS H E,SEAGLE J P.Portfolio selection:the effects of uncertain mean,variances,and covariance[J].Journal of Financial and Quantitative Analysis,1971(6):1251-1262.
  • 4MICHAUD R O.The Markowitz optimization enigma:is "optimized" optimizal?[J].Financial Analysis,1989,45(1):31-42.
  • 5WIGNER K W,DYSON T X.Random matrix theory for sample matrices of independent elements[J].Applied Mathematics and Mechanics,1967,22(1):1-18.
  • 6BAI Z D,LIU H X,WONG W K.Enhancement of the applicability of Markowitz's portfolio optimization by utilizing random matrix theory[J].Mathematical Finance,2009,4(19):639-667.
  • 7TUT'FE W T. Graph theory[ M ]. Cambridge: Cambridge University Press, 2001.
  • 8DOHMEN K, PONITZ A, TIrI:MANN P. A new two-variable generalization of the chromatic polynomial[ J ]. Discrete Math The- or Comput Sci, 2003,6(2) :69-89.
  • 9WELSH D. The Tutte polynomial [ J ]. Random Structures Algorithms, 1999,15 ( 3 -4 ) : 210 -228.
  • 10AVERBOUCH I, MAKOWSKY J. The complexity of multivariate matching polynomials, January 2007. Preprint.

共引文献14

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部