期刊文献+

关于局部对称空间的几个Pinching定理

Several Pinching Theorems on Locally Symmetric Space
下载PDF
导出
摘要 研究了局部对称空间中具有平行平均曲率向量的紧致伪脐子流形,利用活动标架法和Hopf极大值原理讨论了子流形的Pinching问题,即估算子流形第二基本形式模长的平方的Laplacian,再对截面曲率和Ricci曲率加以某种限制,得到这类子流形成为全脐子流形的几个拼挤定理. This paper is mainly to discuss the compact pseudo-umbilical submanifold with parallel mean curvature vector in the locally symmetric space,by means of the active frame method and the Hopf maximum principle.We have studied the Pinching problem of submanifold that we get some rigidity theorems by estimating the Laplacian of the square of the length of the second fundamental form and giving some restrictions to the sectional curvature and the Ricci curvature,and we get some pinching theorems that M n can become a totally umbilical submanifold.
作者 朱华 陈梦 ZHU Hua;CHEN Meng(School of Mathematics and Computer Science,Panzhihua University,Panzhihua Sichuan 617000,China;School of Basic Medical Science,North Sichuan Medical College,Nanchong Sichuan 637100,China)
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2018年第10期31-34,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11471188)
关键词 局部对称空间 平行平均曲率向量 伪脐子流形 the locally symmetric space parallel mean curvature vector pseudo-umbilical submanifold
  • 相关文献

参考文献3

二级参考文献11

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部