摘要
随着变分数阶微分方程在各个领域得到了广泛深入的运用,变分数阶微分方程的求解随之成为一个新的研究热点.考虑到变时间分数阶扩散方程是工程实际中广泛涉及的一类方程,本文针对该类方程的数值求解方法进行研究.首先介绍Caputo分数阶变导数及移位切比雪夫多项式相关定义和性质.然后,基于移位切比雪夫多项式,推导了变时间分数阶微分方程矩阵算子.最后,结合配点方法,应用该算子矩阵将变时间分数阶扩散方程转化为线性方程组的求解,并通过数值算例验证该方法的有效性及正确性.
出处
《赤峰学院学报(自然科学版)》
2018年第10期8-10,共3页
Journal of Chifeng University(Natural Science Edition)