期刊文献+

一种自适应渐进插值的Loop细分方法

An adaptive Loop subdivision scheme based on progressive interpolation
下载PDF
导出
摘要 提出了一种自适应插值Loop细分方法,利用Loop细分方法的极限点公式,采用迭代方法反复增加网格的顶点来构建Loop插值曲面.新生成的顶点只与其邻域的顶点有关联.在细分的过程中,以二面角为细分准则来实现Loop曲面的自适应细分.该方法是一种局部方法,即计算简单、易于实现,又能在保证曲面特征的情况下减少Loop细分产生的大量数据、节省存储空间,适用于曲面模型的网络传输. An adaptive method for interpolating the Loop surface was proposed,which uses the limit point formula of Loop subdivision,and repeatedly constructs loop interpolation surface by iterating the vertices of the mesh.The newly generated vertices are only related to the vertices of the neighborhood.It implements adaptive subdivision of Loop surface with dihedral angle as subdivision criterion.Featured with locality,simple calculation and easy implementation,this method can not only reduce the amount of data generated by Loop subdivision and save storage space,but also retain the detailed features of the surface.It is suitable for the network transmission of the curved surface model.
作者 王艳艳 罗晓锋 张胤 惠丽峰 李海荣 WANG Yan-yan;LUO Xiao-feng;ZHANG Yin;HUI Li-feng;LI Hai-rong(Engineering and Training Center,Inner Mongolia University of Science and Technology,Baotou 014010,China;Mining and Coal School,Inner Mongolia University of Science and Technology,Baotou 014010,China)
出处 《内蒙古科技大学学报》 CAS 2018年第3期278-282,共5页 Journal of Inner Mongolia University of Science and Technology
关键词 二面角 顶点平坦度 插值细分 自适应细分方法 dihedral angle the flatness of vertex interpolation subdivision adaptive subdivision
  • 相关文献

参考文献2

二级参考文献22

  • 1[8]Hoppe H, DeRose T, Duchamp T, Halstead M, et al. Piecewise smooth surface construction[ A]. Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH [ C ].Orlando, Florida: ACM Press, 1994:295 ~ 302
  • 2[1]Catmul E. Clark J. Recursively generated B-spline surfaces on topological meshes [ J]. Computer Aided Design, 1978, 10(6) :350~355
  • 3[2]Doo D, Sabin M. Behaviour of recursive division surfaces near extra-ordinary points[ J]. Computer Aided Design, 1978,10(6) :156~160
  • 4[3]Loop C. Smooth Subdivision Surfaces Based on Triangles[D]. Utah, USA: University of Utah,1987
  • 5[4]DeRose T, Kass M, Tien T. Subdivision surface in character animation[ A]. Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH[ C]. New York: ACM Press, 2000:85 ~ 94
  • 6[5]Stam J. Loop C. Quad/triangle subdivision [ J ]. The Visual Computer, 2002,18:316 ~ 325
  • 7[6]Amresh A, Farin G, Razdan A. Adaptive Subdivision Schemes for triangle Meshes[ M]. Arizona State University; October 5,2000
  • 8Brunet P.Including shape handles in recursive subdivision surfaces. Comput Aid Geom Des . 1988
  • 9Yang X.Surface interpolation of meshes by geometric subdivision. Computer Aided Design . 2005
  • 10Catmull E,Clark J.Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design . 1978

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部