期刊文献+

邻域约束模型的眼底图像硬性渗出聚类检测方法 被引量:2

Clustering Detection Method of Hard Exudates in Fundus Image Based on Neighborhood Constraint Model
下载PDF
导出
摘要 硬性渗出是糖尿病视网膜病变的重要表现和诊断依据.针对硬性渗出检测容易受到图像背景和噪声干扰的问题,提出基于邻域约束模型的眼底图像硬性渗出聚类检测方法.首先设定检测区域,结合区域像素的灰度和空间信息定义目标检测函数,通过迭代计算完成图像的聚类分割;然后计算邻域的灰度差异,将最大灰度变化作为相似性判决的约束条件,进而判定每个聚类图像是否属于硬性渗出.在公开的眼底图像数据库上进行实验的结果表明,该方法能有效地识别和检测眼底图像中可能存在的硬性渗出,对正常图像的判断正确率达到90%,对存在病变图像的检测灵敏度和阳性预测值分别达到79%和81%,有助于眼底疾病的计算机辅助诊断. Hard exudates are important manifestations and diagnostic bases for diabetic retinopathy.To solve the problem of easy disturbance of hard exudates detection by image background and noise,a hard exudates clustering detection method based on neighborhood constraint model is proposed.Firstly,the detection area is set.The target detection function,which is defined by the gray and spatial information of pixels,is used to complete the clustering segmentation of the image by iterative calculation.Then the gray differences of the neighborhood are calculated,and the greatest gray change is used as the constraint condition of the similarity decision to determine whether each cluster image is hard exudates.The performance of the method is verified on the open eye image databases.The results show that the method can effectively identify and detect the possible hard exudation in the fundus image.The accuracy of the normal image reaches 90%,and the sensitivity and positive predictive value for hard exudates achieve 79%and 81%,respectively.The method is thus proved conducive to the computer-aided diagnosis of the fundus diseases.
作者 曹新容 林嘉雯 薛岚燕 余轮 Cao Xinrong;Lin Jiawen;Xue Lanyan;Yu Lun(College of Physics and Information Engineering,Fuzhou University,Fuzhou 350116;Fujian Provincial Key Laboratory of Information Processing and Intelligent Control,Minjiang University,Fuzhou 350121)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第11期2093-2100,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61772254) 闽江学院福建省信息处理与智能控制重点实验室开放基金(MJUKF-IPIC201811)
关键词 眼底图像 硬性渗出 聚类检测 邻域约束模型 fundus image hard exudates clustering detection neighborhood constraint model
  • 相关文献

参考文献6

二级参考文献101

  • 1Zhao-Dong Du,Li-Ting Hu,Gui-Qiu Zhao,Yan Ma,Zhan-Yu Zhou,and Tao Jiang.Epidemiological characteristics and risk factors of diabetic retinopathy in type 2 diabetes mellitus in Shandong Peninsula of China[J].International Journal of Ophthalmology(English edition),2011,4(2):202-206. 被引量:12
  • 2张惠蓉,刘宁朴,夏英杰,田力.糖尿病视网膜病变新生血管和视力预后[J].中华眼底病杂志,1995,11(2):71-73. 被引量:12
  • 3International Diabetes Federation. IDF Diabetes Atlas[R]. 6thed, Brussels, Belgium: International Diabetes Federation, 2014.
  • 4Abramoff M D, Garvin M K, Sonka M. Retinal imaging andimage analysis[J]. IEEE Reviews in Biomedical Engineering,2010, 3: 169-208.
  • 5Winder R J, Morrow P J, McRitchie I N, et al. Algorithms fordigital image processing in diabetic retinopathy[J]. ComputerMedical Imaging and Graphics, 2009, 33: 608-622.
  • 6Kirbas C, Quek F A review of vessel extraction techniques andalgorithms[J]. ACM Computing Surveys, 2004, 36(2): 81-121.
  • 7Hoover A, Kouznetsova V, Goldbaum M. Locating blood vesselsin retinal images by piecewise threshold probing of amatched filter response[J]. IEEE Transactions on Medical Imaging,2000, 19(3): 203-210.
  • 8Staal J J, Abramoff M D, Niemeijer M, et al. Ridge based vesselsegmentation in color images of the retina[J]. IEEE Transactionson Medical Imaging, 2004, 23(4): 501-509.
  • 9Niemeijer M, Staal J J, van Ginneken B, et al. Comparativestudy of retinal vessel segmentation methods on a new publiclyavailable database[C] //Proceedings of SPIE. Bellingham: Societyof Photo-Optical Instrumentation Engineers Press, 2004,5370: 648-656.
  • 10Odstrcilik J, Kolar R, Budai A, et al. Retinal vessel segmentationby improved matched filtering: evaluation on a newhigh-resolution fundus image database[J]. IET Image Processing,2013, 7(4): 373-383.

共引文献1421

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部