期刊文献+

基于孪生卷积神经网络与三元组损失函数的图像识别模型 被引量:2

下载PDF
导出
摘要 深度学习作为近年来迅速发展的全新领域,在科学研究与工业生产等方面受到了广泛的关注。其中,卷积神经网络(Convolutional neutral networks, CNN)作为深度学习中一种经典的神经网络架构,已在图像分类、人脸识别以及信号处理等领域得到了广泛的应用。在此基础上,本文对传统CNN结构进行改进,取消了CNN输出层用于普通分类的Softmax函数,采用基于孪生神经网络(Siamese neutral networks)的CNN架构,并使用三元组损失(Triplet Loss)作为图像分类的目标损失函数。为检验模型效果,我们在国际数据建模和数据分析竞赛平台Kaggle的座头鲸图像识别挑战赛上运用该模型。
作者 张安琪
出处 《电子制作》 2018年第21期49-50,20,共3页 Practical Electronics
  • 相关文献

参考文献3

二级参考文献104

  • 1MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 2MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 3李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 410 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 5Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 6Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 7Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 8Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.
  • 9LeCun y, Boser B, DenkerJ S. et a1. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, I: 541-551.
  • 10Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)[OLJ.[2013-08-01J. http://www. image?net.org/challenges/LSVRC/2012/.

共引文献2648

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部